• Title/Summary/Keyword: curved type

Search Result 390, Processing Time 0.024 seconds

HDQ-FD integrated methodology for nonlinear static and dynamic response of doubly curved shallow shells

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.535-550
    • /
    • 2005
  • The non-linear static and dynamic response of doubly curved thin isotropic shells has been studied for the step and sinusoidal loadings. Dynamic analogues Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by the numerical examples. Numerical examples demonstrate the satisfactory accuracy, efficiency and versatility of the presented approach.

Dynamic Response Analysis of Curved Bridge-AGT Vehicle Interaction System (곡선 교량과 AGT 차량의 상호작용에 의한 동적 응답 해석)

  • 이안호;송재필;김기봉
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.721-726
    • /
    • 2002
  • The topic on today is dynamic response analysis of curved bridge-AGT(Automated Guide-way Transit) vehicle interaction system. Rubber wheel type AGT vehicle is adopted in this study, and the vehicle is idealized as three dimensional eleven DOF model. Three types of composited steel box girder bridges are modelized with F.E. method. And three types of artificially generated surface roughnesses are adopted for analysis. The dynamic equations of curved bridge, AGT vehicle and surface roughness are derived by using Lagrange's equation of motion. And the equations are solved by Newmark-${\beta}$ method. As a result, The dynamic increasement factor is inverse proportional to radius curvature.

  • PDF

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

On snap-buckling of FG-CNTR curved nanobeams considering surface effects

  • Zhang, Yuan Yuan;Wang, Yu X.;Zhang, Xin;Shen, Huo M.;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.293-304
    • /
    • 2021
  • The aim of this paper is to analyze the nonlinear bending of functionally graded (FG) curved nanobeams reinforced by carbon nanotubes (CNTs) in thermal environment. Chen-Yao's surface elastic theory and geometric nonlinearity are also considered. The nanobeams are subjected to uniform loadings and placed on three-parameter substrates. The Euler-Lagrange equations are employed to deduce the equations of equilibrium. Then, the asymptotic solutions and boundary value problems are analytically determined by utilizing the two-step perturbation technique. Finally, the effects of the surface parameters, geometric factors, foundation stiffness, volume fraction, thermal effects and layout type of CNTs on the nonlinear bending of the nanobeams are discussed.

Design and Performance Test of Locking Curved-Nut (풀림방지 Curved-Nut 설계 및 성능 시험)

  • Cha, Min Cheol;Kang, Ho Sung;Kim, Do Yeop;Lee, Suk Yong;Jeong, Hui Jong;Lee, Eung Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • Many types of locking nut are commercializing in the various industries where has heavy vibration. Because nut's loosing causes a serious accident. But the most locking nuts are too expensive as the complicate manufacturing process. In this study, we design the new type of locking nut, "Curved-Nut" that is relatively simple making process. We study a relation between the elastic energy and the nut loosing mechanism. So it is analysed, the elastic energy of Curved-Nut comparing with the locking test. The Curved-Nut was manufactured on the commercial nut using a milling tool with horizontal cutting, one or two time under the nut. As the result, the more elastic energy the more prevent the loosing of the nut. We verified the performance of the loosing nut using the vibration testing equipment (NAS3350).

KisBot II : New Spherical Robot with Curved Two-pendulum Driving Mechanism (두 개의 곡선형 펜들럼 주행 메커니즘을 갖는 구형로봇)

  • Yoon, Joong-Cheol;Ahn, Sung-Su;Lee, Yun-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.323-333
    • /
    • 2011
  • Due to the limited pendulum motion range, the conventional one-pendulum driven spherical robot has limited driving capability. Especially it can not drive parallel direction with center horizontal axis to which pendulum is attached from stationary state. To overcome the limited driving capability of one-pendulum driven spherical robot, we introduce a spherical robot, called KisBot II, with a new type of curved two-pendulum driving mechanism. A cross-shape frame of the robot is located horizontally in the center of the robot. The main axis of the frame is connected to the outer shell, and each curved pendulum is connected to the end of the other axis of the frame respectively. The main axis and pendulums can rotate 360 degrees inside the sphere orthogonally without interfering with each other, also the two pendulums can rotate identically or independent of each other. Due to this driving mechanism, KisBot II has various motion generation abilities, including a fast steering, turning capability in place and during travelling, and four directions including forward, backward, left, and right from stationary status. Experiments for several motions verify the driving efficiency of the proposed spherical robot.

A Study of the 3D Unmanned Remote Surveying for the Curved Semi-Shield Tunneling

  • Lee, Jin-Yi;Jun, Jong-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1791-1796
    • /
    • 2005
  • Semi-shield tunneling is one of the propulsion construction methods used to lay pipes underground between two pits named 'entrance' and 'destination', respectively. Usually a simple composition, such as 'a fiducial target at the entrance+a total station (TS)+a target on the machine', is used to confirm the planned course. However, unavoidable curved sections are present in small-sized pipe lines, which are laid after implementation of a road system, for public works such as waterworks, sewer, electrical power, and gas and communication networks. Therefore, if the planned course has a curved section, it is difficult to survey the course with the abovementioned simple composition. This difficulty could be solved by using the multiple total stations (MTS), which attaches the cross type linear LED target to oneself. The MTS are disposed to where each TS can detect the LED target at the other TS or the base point or the machine. And the accurate relative positions between each MTS and target are calculated from measured data. This research proposes the relative and absolute coordinate calculation algorithm by using three MTS to measure a curved course with 20m curvature at 30m maximum distance, and verifies the algorithm experimentally.

  • PDF

Large amplitude free vibrations of FGM shallow curved tubes in thermal environment

  • Babaei, Hadi;Kiani, Yaser;Eslami, M. Reza
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.693-705
    • /
    • 2020
  • In the current investigation, large amplitude free vibration behavior of shallow curved pipes (tubes) made of functionally graded materials is investigated. Properties of the tube are distributed across the radius of the tube and are obtained by means of a power law function. It is also assumed that all thermo-mechanical properties are temperature dependent. The governing equations of the tube are obtained using a higher order shear deformation tube theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large displacements and small strains. Uniform temperature elevation of the tube is also included into the formulation. For the case of tubes which are simply supported in flexure and axially immovable, the governing equations are solved using the two-step perturbation technique. Closed form expressions are provided to obtain the small and large amplitude fundamental natural frequencies of the FGM shallow curved tubes in thermal environment. Numerical results are given to explore the effects of thermal environment, radius ratio, and length to thickness ratio of the tube on the fundamental linear and non-linear frequencies.

Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect

  • Souvik S. Rathore;Vishesh R. Kar;Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.519-533
    • /
    • 2023
  • This work focuses on the dynamic analysis of thermal barrier coated straight and curved turbine blades modelled as functionally graded sandwich panel under thermal environment. The pre- twisted straight/curved blade model is considered to be fixed to the hub and, the complete assembly of the hub and blade are assumed to be rotating. The functionally graded sandwich composite blade is comprised of functionally graded face-sheet material and metal alloy core. The constituents' material properties are assumed to be temperature-dependent, however, the overall properties are evaluated using Voigt's micromechanical scheme in conjunction with the modified power-law functions. The blade model kinematics is based on the equivalent single-layer shear deformation theory. The equations of motion are derived using the extended Hamilton's principle by including the effect of centrifugal forces, and further solved via 2D- isoparametric finite element approximations. The mesh refinement and validation tests are performed to illustrate the stability and accurateness of the present model. In addition, frequency characteristics of the pre-twisted rotating sandwich blades are computed under thermal environment at various sets of parametric conditions such as twist angles, thickness ratios, aspect ratios, layer thickness ratios, volume fractions, rotational velocity and blade curvatures which can be further useful for designing the blade type structures under turbine operating conditions.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.