• 제목/요약/키워드: curved lane detection

검색결과 15건 처리시간 0.023초

카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출 (Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane)

  • 장호진;백승해;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

허프변환과 차선모델을 이용한 효과적인 차선검출에 관한 연구 (Study on Effective Lane Detection Using Hough Transform and Lane Model)

  • 김기석;이진욱;조재수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.34-36
    • /
    • 2009
  • This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.

  • PDF

가우시안 혼합모델을 이용한 강인한 실시간 곡선차선 검출 알고리즘 (Realtime Robust Curved Lane Detection Algorithm using Gaussian Mixture Model)

  • 장찬희;이순주;최창범;김영근
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2016
  • ADAS (Advanced Driver Assistance Systems) requires not only real-time robust lane detection, both straight and curved, but also predicting upcoming steering direction by detecting the curvature of lanes. In this paper, a curvature lane detection algorithm is proposed to enhance the accuracy and detection rate based on using inverse perspective images and Gaussian Mixture Model (GMM) to segment the lanes from the background under various illumination condition. To increase the speed and accuracy of the lane detection, this paper used template matching, RANSAC and proposed post processing method. Through experiments, it is validated that the proposed algorithm can detect both straight and curved lanes as well as predicting the upcoming direction with 92.95% of detection accuracy and 50fps speed.

차선 변화벡터와 카디널 스플라인을 이용한 곡선 차선 검출방법 (A Curve Lane Detection Method using Lane Variation Vector and Cardinal Spline)

  • 허환;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.277-284
    • /
    • 2014
  • 본 논문에서는 카메라 파라미터가 필요 없는 역 투시변환 영상에 차선 변화벡터와 카디널 스플라인을 이용하여 변화에 강인한 곡선 차선 검출 방법을 제안한다. 이 방법은 역 투시변환과 차선 필터의 전처리 과정이 적용된 영상의 시작 S 프레임과 그 다음 S+1 프레임에서 차선 후보 영역을 설정하여 차선 영역을 검출하고, 검출된 차선영역을 이용하여 차선 변화벡터를 계산한 결과를 가지고 이후의 프레임에서 차선이 위치할 지점을 예측한다. 이후에 예측된 차선 위치에서부터 스캔 영역을 설정하고 이 영역 내에서 새로운 차선 위치를 검출하며, 검출된 차선 위치를 이용해 차선 변화벡터를 갱신하고, 차선 영역 내의 제어 점들에 카디널 스플라인을 적용하여 차선을 검출한다. 제안하는 방법은 차선의 형태 변화에 강인한 곡선 차선 검출방법이지만 직선 차선에도 잘 적응됨을 보였으며 한 프레임을 처리하는 데 약 20ms 정도의 양호한 차선검출 속도를 보였다.

도로 환경 변화에 강인한 차선 검출 방법 (Robust Lane Detection Method in Varying Road Conditions)

  • 김병수;김회율
    • 전자공학회논문지SC
    • /
    • 제49권1호
    • /
    • pp.88-93
    • /
    • 2012
  • 자동차 기술의 발전으로 카메라를 이용하여 차선을 검출하는 운전자 보조 시스템에 대한 연구가 활발히 진행되고 있다. 하지만 비가 오거나 차선이 노후화된 경우 차선 검출이 어려운 문제가 있다. 본 논문에서는 도로 환경 변화에 강인한 차선 검출 방법을 제안한다. 제안하는 방법은 밝기 값과 차선의 평균적인 폭 정보를 이용하여 후보 영역을 추출한다. 추출된 후보 영역을 기준으로 허프 변환을 이용하여 구간별 직선을 추출하고, B-Snake 방법을 사용하여 자연스러운 차선을 검출하게 된다. 노후화 되거나 손실된 차선을 검출하기 위하여, 기존에 검출된 차선 정보를 이용하여 다음 프레임에서 차선이 위치할 경로를 계산하고, 계산된 경로를 기준으로 차선 영역에서 검출되는 후보 영역에 대한 가중치를 부여한다. 실험 결과 제안하는 방법은 노후화되거나 비가 내려 차선의 밝기가 낮은 경우에도 효과적으로 차선을 검출하였다.

자율주행 차량의 도로 평면선형 기반 차로이탈 허용 범위 산정 (Estimating a Range of Lane Departure Allowance based on Road Alignment in an Autonomous Driving Vehicle)

  • 김영민;김형수
    • 한국ITS학회 논문지
    • /
    • 제15권4호
    • /
    • pp.81-90
    • /
    • 2016
  • 자율주행 차량은 변화하는 도로환경에 스스로 대응 가능하여야 하여, 인간 운전자 수준의 도로환경 인지성능을 확보하여야 한다. 자율주행 차량의 센서 중 영상센서는 주행방향 결정 및 차로이탈 방지 등 조향제어 수행을 위하여 차선인식 기능을 수행한다. 현재 제시된 영상센서의 차선인식 성능기준은 ADAS(Advanced Driver Assistance System)과 관련된 '운전자 보조' 관점의 성능기준으로서, 자율주행 차량의 '주체적 인지'를 위한 성능조건과 상이할 것으로 판단된다. 본 연구에서는 자율주행 시 차선인식이 비정상적으로 지속되어, 직선구간에서 곡선구간으로 진입하는 차량이 조향실패에 따라 차로를 이탈하는 상황을 가정하였다. 차량 이동궤적을 기반하여 차로이탈 상황을 모형화하고, 차로이탈 허용 수준에 따른 자율주행 차량 영상센서 성능수준을 제시하였다. 분석 결과 승용차 조건에서 차선인식 기능이 1초 이상 연속적인 오작동을 일으킨다면 차로이탈에 의한 위험한 상황에 놓일 수 있으며, 자율주행 차량을 위하여 현재 ADAS 영상센서 성능평가 방법에서의 차로이탈조건보다 심각한 차로이탈상황을 고려한 영상센서 성능평가 방안이 필요할 것으로 판단된다.

3D 형광이미지 분석을 위한 레인 검출 및 추적 알고리즘 (Lane Detection and Tracking Algorithm for 3D Fluorescence Image Analysis)

  • 이복주;문혁;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.27-32
    • /
    • 2016
  • A new lane detection algorithm is proposed for the analysis of DNA fingerprints from a polymerase chain reaction (PCR) gel electrophoresis image. Although several research results have been previously reported, it is still challenging to extract lanes precisely from images having abrupt background brightness difference and bent lanes. We propose an edge based algorithm for calculating the average lane width and lane cycle. Our method adopts sub-pixel algorithm for extracting rising-edges and falling edges precisely and estimates the lane width and cycle by using k-means clustering algorithm. To handle the curved lanes, we partition the gel image into small portions, and track the lane centers in each partitioned image. 32 gel images including 534 lanes are used to evaluate the performance of our method. Experimental results show that our method is robust to images having background difference and bent lanes without any preprocessing.

탑뷰(top view) 영상을 이용한 곡선 템플릿 정합 기반 차선 및 곡률 검출 알고리즘 (Lane and Curvature Detection Algorithm based on the Curve Template Matching Method using Top View Image)

  • 한성지;한영준;한헌수
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.97-106
    • /
    • 2010
  • 본 논문에서는 곡선 템플릿 정합 방법을 이용한 곡률 검출 및 차선 검출 알고리즘을 제안한다. 본 논문에서는 영상의 원근감을 제거하기 위하여 입력 영상을 탑뷰(top view) 영상으로 변환한다. 생성된 탑뷰 영상을 이용하여 에지 영상을 생성하는데 검출의 정확도를 높이기 위해 차선 검출에 적합한 에지 검출 방법을 제안한다. 검출된 에지 영상을 이용하여 먼저 직선 차선을 검출한 후 본 논문에서 제안한 곡선 템플릿 정합 방법을 이용하여 가장 적합한 곡선 차선을 결정하여 곡률을 검출한다. 제안된 곡선 템플릿 정합 방법은 법선의 방정식과 원의 방정식만을 이용한 단순한 계산만으로 곡선 차선을 검출하기 때문에 알고리즘이 단순하고 검출 시간이 매우 짧다. 또한 본 논문에서는 이전 프레임에서 검출된 차선 정보를 이용하여 현재 프레임의 차선 정보를 보정하고 보완함으로써 보다 안정적인 차선 검출이 가능하였다. 제안된 알고리즘은 고속도로나 비교적 복잡한 시내 도로, 야간 시 고속도로 등에서 얻은 다양한 환경에서의 영상을 이용하여 실험하였다. 제안된 알고리즘은 초당 70 frame 가량의 영상 처리가 가능하였고 95% 이상의 차선 검출율과 90% 가량의 곡률 검출율을 얻을 수 있었다.

굴곡진 도로에서의 구간 선형 모델을 이용한 차선 검출 (Lane Detection on Non-flat Road Using Piecewise Linear Model)

  • 정민영;김경환
    • 한국통신학회논문지
    • /
    • 제39A권6호
    • /
    • pp.322-332
    • /
    • 2014
  • 본 논문에서는 굴곡진 도로를 구간 선형 모델로 근사화한 차선 검출 알고리즘을 제안한다. 기존의 차선 검출 알고리즘들은 지표면이 평면이라는 가정을 이용하기 때문에, 도로면이 굴곡진 실제 도로에서는 강건한 차선 검출이 어렵다. 제안하는 방법에서는 이 문제를 전체 차로를 구간으로 분할하고, 각 구간 내에서 차로를 가장 잘 근사하는 평면 차로를 구함으로써 해결한다. 이를 위해 각 구간 내에서 다양한 각도와 위치를 가지는 평면 형태의 구간 차로 후보들을 생성하였다. 구간 차로 후보들의 연결 조합 중 실제 차로에 가장 가까운 조합을 다이나믹프로그래밍을 이용하여 찾음으로써 굴곡진 차로를 근사한다. 평면 도로 뿐 아니라, 상하, 좌우의 굴곡이 있는 도로 영상으로 구성된 데이터세트에 대하여 제안하는 방법의 차선 검출 성능을 검증하였다. 평면 도로를 가정한 기존의 방법들이 80%에서 90% 초반의 검출률을 보이는 반면, 제안하는 방법은 90% 후반의 검출률을 보임을 통해 굴곡진 도로에서의 차선 검출의 강건성을 입증하였다.

가우시안 함수기반 RANSAC을 이용한 차선검출 기법 (Lane Detection Using Gaussian Function Based RANSAC)

  • 최연규;서은영;석수영;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제13권4호
    • /
    • pp.195-204
    • /
    • 2018
  • Lane keeping assist and departure prevention system are the key functions of ADAS. In this paper, we propose lane detection method which uses Gaussian function based RANSAC. The proposed method consists mainly of IPM (inverse perspective mapping), Canny edge detector, and Gaussian function based RANSAC (Random Sample Consensus). The RANSAC uses Gaussian function to extract the parameters of straight or curved lane. The proposed RANSAC is different from the conventional one, in the following two aspects. One is the selection of sample with different probability depending on the distance between sample and camera. Another is the inlier sample score that assigns higher weights to samples near to camera. Through simulations, we show that the proposed method can achieve good performance in various of environments.