• Title/Summary/Keyword: curve lane detection

Search Result 23, Processing Time 0.02 seconds

A Study on the detection of curve lane using Cubic Spline (Cubic Spline 곡선을 이용한 곡선 차선 인식에 관한 연구)

  • Kang, Sung-Hak;Cheong, Cha-Keon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.169-171
    • /
    • 2004
  • This paper propose a new detection method of curve lane using Catmull-Rom spline for recognition various shape of the curve lane. To improve the accracy of lane detection, binarization and thinning process are firstly performed on the input image. Next, features on the curve lane such as curvature and orientation are extracted, and the control points of Catmull-Rom spline are detected to recognize the curve lane. Finally, Computer simulation results are given using a natural test image to show the efficiency of the proposed scheme.

  • PDF

Lane detection system for self-driving car (이동 상황에서의 실시간 차선 인식을 통한 무인자동차 제어 - labeling을 사용한 dynamic한 상황에서의 강인한 차선 인식)

  • Kim, Hyun-Jun;Ryu, Moon-Wook;Lee, Suk-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.205-209
    • /
    • 2008
  • Recently, for development of hardware systems, it has been comercially developed for lane detection system of assistive funtion to drivers. There are so many driving systems that is capable of detecting lane for ideal environment like quite visible lane and sweep curve just like highway, but these kinds of system are hard to apply for self driving system because it is difficult to detect lane in dynamic environment, which have rapid curve or only one sided lane For this paper, we proposed intelligent driving system that is able to detect the lane in case of rapid curve by labeling, or one sided lane by lane prediction. based on experimental results, we prove our lane detection system is able to detect lane not only in ideal environment, but also environment which have rapid curve or one sided lane.

  • PDF

Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane (카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출)

  • Jang, Ho-Jin;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Detection of Lane Curve Direction by Using Image Processing Based on Neural Network (차선의 회전 방향 인식을 위한 신경회로망 응용 화상처리)

  • 박종웅;장경영;이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.178-185
    • /
    • 1999
  • Recently, Collision Warning System is developed to improve vehicle safety. This system chiefly uses radar. But the detected vehicle from radar must be decide whether it is the vehicle in the same lane of my vehicle or not. Therefore, Vision System is needed to detect traffic lane. As a preparative step, this study presents the development of algorithm to recognize traffic lane curve direction. That is, the Neural Network that can recognize traffic lane curve direction is constructed by using the information of short distance, middle distance, and decline of traffic lane. For this procedure, the relation between used information and traffic lane curve direction must be analyzed. As the result of application to sampled 2,000 frames, the rate of success is over 90%.t text here.

  • PDF

The Detection of the Lane Curve using the Lane Model on the Image Coordinate Systems (이미지 좌표계상의 차선 모델을 이용한 차선 휨 검출)

  • 박종웅;이준웅;장경영;정지화;고광철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.193-200
    • /
    • 2003
  • This paper proposes a novel algorithm to recognize the curve of a structured road. The proposed algorithm uses an LCF (Lane Curve Function) obtained by the transformation of a parabolic function defined on world coordinate into image coordinate. Unlike other existing methods, the algorithm needs no transformation between world coordinate and image coordinate owing to the LCF. In order to search for an LCF describing the lane best, the differential comparison between the slope of an assumed LCF and the phase angle of edge pixels in the LROI (Lane Region Of Interest) constructed by the LCF is implemented. As finding the true LCF, the lane curve is determined. The proposed method is proved to be efficient through various kinds of images, providing the reliable curve direction and the valid curvature compared to the real road.

Analysis of Deep Learning-Based Lane Detection Models for Autonomous Driving (자율 주행을 위한 심층 학습 기반 차선 인식 모델 분석)

  • Hyunjong Lee;Euihyun Yoon;Jungmin Ha;Jaekoo Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.225-231
    • /
    • 2023
  • With the recent surge in the autonomous driving market, the significance of lane detection technology has escalated. Lane detection plays a pivotal role in autonomous driving systems by identifying lanes to ensure safe vehicle operation. Traditional lane detection models rely on engineers manually extracting lane features from predefined environments. However, real-world road conditions present diverse challenges, hampering the engineers' ability to extract adaptable lane features, resulting in limited performance. Consequently, recent research has focused on developing deep learning based lane detection models to extract lane features directly from data. In this paper, we classify lane detection models into four categories: cluster-based, curve-based, information propagation-based, and anchor-based methods. We conduct an extensive analysis of the strengths and weaknesses of each approach, evaluate the model's performance on an embedded board, and assess their practicality and effectiveness. Based on our findings, we propose future research directions and potential enhancements.

Study on Effective Lane Detection Using Hough Transform and Lane Model (허프변환과 차선모델을 이용한 효과적인 차선검출에 관한 연구)

  • Kim, Gi-Seok;Lee, Jin-Wook;Cho, Jae-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.34-36
    • /
    • 2009
  • This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.

  • PDF

A Curve Lane Detection Method using Lane Variation Vector and Cardinal Spline (차선 변화벡터와 카디널 스플라인을 이용한 곡선 차선 검출방법)

  • Heo, Hwan;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.7
    • /
    • pp.277-284
    • /
    • 2014
  • The detection method of curves for the lanes which is powerful for the variation by utilizing the lane variation vector and cardinal spline on the inverse perspective transformation screen images which do not required the camera parameters are suggested in this paper. This method detects the lane area by setting the expected lane area in the s frame and next s+1 frame where the inverse perspective transformation and entire process of the lane filter are adapted, and expects the points of lane location in the next frames with the lane variation vector calculation from the detected lane areas. The scan area is set from the nextly expected lane position and new lane positions are detected within these areas, and the lane variation vectors are renewed with the detected lane position and the lanes are detected with application of cardinal spline for the control points inside the lane areas. The suggested method is a powerful method for curved lane detection, but it was adopted to the linear lanes too. It showed an excellent lane detection speed of about 20ms in processing a frame.

Lane and Curvature Detection Algorithm based on the Curve Template Matching Method using Top View Image (탑뷰(top view) 영상을 이용한 곡선 템플릿 정합 기반 차선 및 곡률 검출 알고리즘)

  • Han, Sung-Ji;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.97-106
    • /
    • 2010
  • In this paper, lane and curvature detection algorithm based on the curve template matching method is proposed. To eliminate the perspective effect of the original image, the input image is transformed to a top view image. From this top view image, its edge image is created. To increase the accuracy of detection, a novel edge detection method, which shows a strength in lane detection, is proposed. In the first step, straight lanes are detected from the edge image, and then the Curve Template Matching(CTM) method is applied to detect the curved lanes and to find their curvatures. Since the proposed CTM method uses only the simple equations, such as line and circle equations, to detect the curved lane, the algorithm is simple. Moreover, we used the detected lane information in the previous frames to detect the current frame's lanes, the detection results become more reliable. The proposed algorithm has been tested in various road conditions (highway, urban street, night time highway, etc.). Experimental results show that the proposed algorithm can process about 70 frames per second with the successful lane detection rate over 95% and curvature detection rate about 90%.

Design of Curve Road Detection System by Convergence of Sensor (센서 융합에 의한 곡선차선 검출 시스템 설계)

  • Kim, Gea-Hee;Jeong, Seon-Mi;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.253-259
    • /
    • 2016
  • Regarding the research on lane recognition, continuous studies have been in progress for vehicles to navigate autonomously and to prevent traffic accidents, and lane recognition and detection have remarkably developed as different algorithms have appeared recently. Those studies were based on vision system and the recognition rate was improved. However, in case of driving at night or in rain, the recognition rate has not met the level at which it is satisfactory. Improving the weakness of the vision system-based lane recognition and detection, applying sensor convergence technology for the response after accident happened, among studies on lane detection, the study on the curve road detection was conducted. It proceeded to study on the curve road detection among studies on the lane recognition. In terms of the road detection, not only a straight road but also a curve road should be detected and it can be used in investigation on traffic accidents. Setting the threshold value of curvature from 0.001 to 0.06 showing the degree of the curve, it presented that it is able to compute the curve road.