This paper propose a new detection method of curve lane using Catmull-Rom spline for recognition various shape of the curve lane. To improve the accracy of lane detection, binarization and thinning process are firstly performed on the input image. Next, features on the curve lane such as curvature and orientation are extracted, and the control points of Catmull-Rom spline are detected to recognize the curve lane. Finally, Computer simulation results are given using a natural test image to show the efficiency of the proposed scheme.
최근 하드웨어의 발달로 영상처리를 사용한 운전자 보조 기능의 차선인식 시스템이 상용화 되고 있다. 하지만 고속도로 주행과 같은 차선이 확실하고 곡률이 완만한 비교적 이상적인 상황에서의 차선인식을 전제로 만들어진 시스템이 많아 시내도로와 같이 상대적으로 곡률이 크고 일부 차선이 확실치 않은 장소에서는 차선인식이 힘들어 무인 자동차 제어에는 적용하기 힘들다. 본 논문은 무인차량의 자동주행을 위해 labeling과 차선예측을 통해 급격한 곡선 차로나 차선이 한쪽만 그려져 있는 경우에도 강인하게 차선인식이 가능한 시스템을 제안한다. 제안된 방법을 이용하여 이상적인 경우가 아닌 급격한 곡선차로가 있거나, 차선이 한쪽만 있는 실제 환경의 경우에서도 차선인식이 가능함을 보였다.
In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.
Recently, Collision Warning System is developed to improve vehicle safety. This system chiefly uses radar. But the detected vehicle from radar must be decide whether it is the vehicle in the same lane of my vehicle or not. Therefore, Vision System is needed to detect traffic lane. As a preparative step, this study presents the development of algorithm to recognize traffic lane curve direction. That is, the Neural Network that can recognize traffic lane curve direction is constructed by using the information of short distance, middle distance, and decline of traffic lane. For this procedure, the relation between used information and traffic lane curve direction must be analyzed. As the result of application to sampled 2,000 frames, the rate of success is over 90%.t text here.
This paper proposes a novel algorithm to recognize the curve of a structured road. The proposed algorithm uses an LCF (Lane Curve Function) obtained by the transformation of a parabolic function defined on world coordinate into image coordinate. Unlike other existing methods, the algorithm needs no transformation between world coordinate and image coordinate owing to the LCF. In order to search for an LCF describing the lane best, the differential comparison between the slope of an assumed LCF and the phase angle of edge pixels in the LROI (Lane Region Of Interest) constructed by the LCF is implemented. As finding the true LCF, the lane curve is determined. The proposed method is proved to be efficient through various kinds of images, providing the reliable curve direction and the valid curvature compared to the real road.
With the recent surge in the autonomous driving market, the significance of lane detection technology has escalated. Lane detection plays a pivotal role in autonomous driving systems by identifying lanes to ensure safe vehicle operation. Traditional lane detection models rely on engineers manually extracting lane features from predefined environments. However, real-world road conditions present diverse challenges, hampering the engineers' ability to extract adaptable lane features, resulting in limited performance. Consequently, recent research has focused on developing deep learning based lane detection models to extract lane features directly from data. In this paper, we classify lane detection models into four categories: cluster-based, curve-based, information propagation-based, and anchor-based methods. We conduct an extensive analysis of the strengths and weaknesses of each approach, evaluate the model's performance on an embedded board, and assess their practicality and effectiveness. Based on our findings, we propose future research directions and potential enhancements.
This paper proposes an effective lane detection algorithm using hugh transform and lane model. The proposed lane detection algorithm includes two major components, i.e., lane marks segmentation and an exact lane extraction using a novel postprocessing technique. The first step is to segment lane marks from background images using HSV color model. Then, a novel postprocessing is used to detect an exact lane using Hugh transform and lane models(linear and curved lane models). The postprocessing consists of three parts, i.e, thinning process, Hugh Transform and filtering process. We divide input image into three regions of interests(ROIs). Based on lane curve function(LCF), we can detect an exact lane from various extracted lane lines. The lane models(linear and curved lane mode]) are used in order to judge whether each lane segment is fit or not in each ROIs. Experimental results show that the proposed scheme is very effective in lane detection.
본 논문에서는 카메라 파라미터가 필요 없는 역 투시변환 영상에 차선 변화벡터와 카디널 스플라인을 이용하여 변화에 강인한 곡선 차선 검출 방법을 제안한다. 이 방법은 역 투시변환과 차선 필터의 전처리 과정이 적용된 영상의 시작 S 프레임과 그 다음 S+1 프레임에서 차선 후보 영역을 설정하여 차선 영역을 검출하고, 검출된 차선영역을 이용하여 차선 변화벡터를 계산한 결과를 가지고 이후의 프레임에서 차선이 위치할 지점을 예측한다. 이후에 예측된 차선 위치에서부터 스캔 영역을 설정하고 이 영역 내에서 새로운 차선 위치를 검출하며, 검출된 차선 위치를 이용해 차선 변화벡터를 갱신하고, 차선 영역 내의 제어 점들에 카디널 스플라인을 적용하여 차선을 검출한다. 제안하는 방법은 차선의 형태 변화에 강인한 곡선 차선 검출방법이지만 직선 차선에도 잘 적응됨을 보였으며 한 프레임을 처리하는 데 약 20ms 정도의 양호한 차선검출 속도를 보였다.
본 논문에서는 곡선 템플릿 정합 방법을 이용한 곡률 검출 및 차선 검출 알고리즘을 제안한다. 본 논문에서는 영상의 원근감을 제거하기 위하여 입력 영상을 탑뷰(top view) 영상으로 변환한다. 생성된 탑뷰 영상을 이용하여 에지 영상을 생성하는데 검출의 정확도를 높이기 위해 차선 검출에 적합한 에지 검출 방법을 제안한다. 검출된 에지 영상을 이용하여 먼저 직선 차선을 검출한 후 본 논문에서 제안한 곡선 템플릿 정합 방법을 이용하여 가장 적합한 곡선 차선을 결정하여 곡률을 검출한다. 제안된 곡선 템플릿 정합 방법은 법선의 방정식과 원의 방정식만을 이용한 단순한 계산만으로 곡선 차선을 검출하기 때문에 알고리즘이 단순하고 검출 시간이 매우 짧다. 또한 본 논문에서는 이전 프레임에서 검출된 차선 정보를 이용하여 현재 프레임의 차선 정보를 보정하고 보완함으로써 보다 안정적인 차선 검출이 가능하였다. 제안된 알고리즘은 고속도로나 비교적 복잡한 시내 도로, 야간 시 고속도로 등에서 얻은 다양한 환경에서의 영상을 이용하여 실험하였다. 제안된 알고리즘은 초당 70 frame 가량의 영상 처리가 가능하였고 95% 이상의 차선 검출율과 90% 가량의 곡률 검출율을 얻을 수 있었다.
차선의 인식을 위한 연구는 차량의 자율 주행 또는 교통사고의 예방을 위하여 지속적인 연구가 진행되고 있으며, 최근에는 다양한 알고리즘이 등장하여 차선 인식과 검출은 비약적으로 발전하였다. 이들 연구는 주로 비전 시스템 기반의 연구이며 인식률 또한 상당히 좋아 졌다. 그러나 야간의 도로 또는 우천 시에는 그 인식률이 아직 만족할 수준까지 도달하지는 못하였다. 본 논문은 이러한 비전 시스템 기반의 차선 인식 및 검출의 단점을 개선하여 사고 발생 후 대응을 위한 센서 융합 기술을 적용하여 차선 검출에 대한 연구를 수행하였고, 차선 검출에 대한 연구 중 곡선차선의 검출에 대한 연구를 진행하였다. 도로는 직선도로 뿐만 아니라 다양한 곡선도로까지 검출 가능해야 하며 이는 교통사고 조사 시에 활용될 수 있다. 커브의 굽은 정도를 나타내는 곡률의 임계값을 0.001~0.06로 하여 곡선자선을 산출해 낼 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.