• Title/Summary/Keyword: curvature identities

Search Result 7, Processing Time 0.019 seconds

GRAY CURVATURE IDENTITIES FOR ALMOST CONTACT METRIC MANIFOLDS

  • Mocanu, Raluca;Munteanu, Marian Ioan
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.505-521
    • /
    • 2010
  • Alfred Gray introduced in [8] three curvature identities for the class of almost Hermitian manifolds. Using the warped product construction and the Boothby-Wang fibration we will give an equivalent of these identities for the class of almost contact metric manifolds.

ON THE ES CURVATURE TENSOR IN g - ESXn

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • This paper is a direct continuation of [1]. In this paper we investigate some properties of ES-curvature tensor of g - $ESX_n$, with main emphasis on the derivation of several useful generalized identities involving it. In this subsequent paper, we are concerned with contracted curvature tensors of g - $ESX_n$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in g - $ESX_n$, which has a great deal of useful physical applications.

THE CURVATURE TENSORS IN THE EINSTEIN'S $^*g$-UNIFIED FIELD THEORY II. THE CONTRACTED SE-CURVATURE TENSORS OF $^*g-SEX_n$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.641-652
    • /
    • 1998
  • Chung and et al. ([2].1991) introduced a new concept of a manifold, denoted by $^{\ast}g-SEX_n$, in Einstein's n-dimensional $^{\ast}g$-unified field theory. The manifold $^{\ast}g-SEX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{\lambda \nu}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor $^{\ast}g^{\lambda \nu}$. Recently, Chung and et al.([3],1998) obtained a concise tensorial representation of SE-curvature tensor defined by the SE-connection of $^{\ast}g-SEX_n$ and proved deveral identities involving it. This paper is a direct continuations of [3]. In this paper we derive surveyable tensorial representations of constracted curvature tensors of $^{\ast}g-SEX_n$ and prove several generalized identities involving them. In particular, the first variation of the generalized Bianchi's identity in $^{\ast}g-SEX_n$, proved in theorem (2.10a), has a great deal of useful physical applications.

  • PDF

A STUDY ON THE CONTRACTED ES CURVATURE TENSOR IN g-ESXn

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.381-390
    • /
    • 2011
  • This paper is a direct continuation of [1]. In this paper we derive tensorial representations of contracted ES curvature tensors of $g-ESX_n$ and prove several generalized identities involving them. In particular, a variation of the generalized Bianchi's identity in $g-ESX_n$, which has a great deal of useful physical applications, is proved in Theorem (2.9).

THE CURVATURE TENSORS IN THE EINSTEIN′S *g- UNIFIED FIELD THEORY I. THE SE-CURVATURE TENSOR OF *g-SE $X_{n}$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1060
    • /
    • 1998
  • Recently, Chung and et al. ([11], 1991c) introduced a new concept of a manifold, denoted by *g-SE $X_{n}$ , in Einstein's n-dimensional *g-unified field theory. The manifold *g-SE $X_{n}$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor * $g^{λν}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor * $g^{λν}$. This paper is the first part of the following series of two papers: I. The SE-curvature tensor of *g-SE $X_{n}$ II. The contracted SE-curvature tensors of *g-SE $X_{n}$ In the present paper we investigate the properties of SE-curvature tensor of *g-SE $X_{n}$ , with main emphasis on the derivation of several useful generalized identities involving it. In our subsequent paper, we are concerned with contracted curvature tensors of *g-SE $X_{n}$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in *g-SE $X_{n}$ , which has a great deal of useful physical applications.tions.

  • PDF