• Title/Summary/Keyword: curvature equation

Search Result 263, Processing Time 0.024 seconds

THE METHOD OF NONFLAT TIME EVOLUTION (MONTE) IN PDE-BASED IMAGE RESTORATION

  • Cha, Youngjoon;Kim, Seongjai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.961-971
    • /
    • 2012
  • This article is concerned with effective numerical techniques for partial differential equation (PDE)-based image restoration. Numerical realizations of most PDE-based denoising models show a common drawback: loss of fine structures. In order to overcome the drawback, the article introduces a new time-stepping procedure, called the method of nonflat time evolution (MONTE), in which the timestep size is determined based on local image characteristics such as the curvature or the diffusion magnitude. The MONTE provides PDE-based restoration models with an effective mechanism for the equalization of the net diffusion over a wide range of image frequency components. It can be easily applied to diverse evolutionary PDE-based restoration models and their spatial and temporal discretizations. It has been numerically verified that the MONTE results in a significant reduction in numerical dissipation and preserves fine structures such as edges and textures satisfactorily, while it removes the noise with an improved efficiency. Various numerical results are shown to confirm the claim.

A Study on the Load Carrying Capacity and Energy Absorption Capacity of the Concrete Filled Steel Tube Column (콘크리트충전 강관기둥의 내력 및 변형 능력에 관한 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.121-128
    • /
    • 1997
  • It has been reported by the existing papers that the ultimate load capacity and energy absorption capacity of the CFST column are considerably higher than those resulting from a simple addition of the capacities of the concrete and the steel tube. It is normally believed that the confined effect for the infilled concrete due to the hoop tension of steel at the parameter of cross sections can remarkably improve the ductility and energy absorption capacities of the CFST columns. This paper provides the results of a study on the load-carrying capacities and energy absorption capacities of the CFST columns, a numerical analysis method, i. e. N-M interaction curves and Moment curvature relationships. The numerical approaches are verified by comparing with the existing test results and the circular and square steel tube sections are selected to clarify the amount of confinement effects to improve the ultimate deformable capacity(a ultimate strain value) of the infilled concrete. Then, an adequate value of the ultimate strain of the infilled concrete and an equation of the ultimate capacity of the CFST column are suggested.

  • PDF

The Characteristics of Natural Frequencies of the Curved Bridge with Singly Symmetric Cross Sections (1축 대칭단면을 갖는 곡선교의 고유진동수특성)

  • Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1281-1288
    • /
    • 1994
  • Beams curved in plan are often designed with the circular curved member system including warping effects. In this study, the curved bridges are idealized as the circular curved member system with singly symmetric cross sections and simply supported ends. Displacement fields of them to satisfy the boundary conditions are expanded by Fourier series and the governing equation of natural frequencies of them is derived. The distributions of the characteristics of natural frequencies of them are shown according to the variations of relevant parameters-angle of intersection, curvature, and parameter of symmetry of cross section which can represent the properties of the curved bridges. A parametric study is conducted to investigate the effect of relevant parameters on natural frequencies.

  • PDF

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading

  • Sahoo, Brundaban;Sahoo, Bamadev;Sharma, Nitin;Mehar, Kulmani;Panda, Subrata Kumar
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.641-656
    • /
    • 2020
  • The finite element solutions of thermal buckling load values of the graded sandwich curved shell structure are reported in this research using a higher-order kinematic model including the shear deformation effect. The numerical buckling temperature has been computed using an in-house specialized code (MATLAB environment) prepared in the framework of the current mathematical formulation. In addition, the mathematical model includes the excess structural distortion under the influence of elevated environment via Green-Lagrange nonlinear strain. The corresponding eigenvalue equation has been solved to predict the critical buckling temperature of the graded sandwich structure. The numerical stability and the accuracy of the current solution have been confirmed by comparing with the available published results. Thereafter, the model is extended to bring out the influences of structural parameters i.e. the curvature ratio, core-face thickness ratio, support conditions, power-law indices and sandwich types on the thermal buckling behavior of graded sandwich curved shell panels.

Prediction of Shape Accuracy in Elastomer-Forming of a Cylindrical Tube by a Response Surface Method (반응표면법을 이용한 실린더 튜브 고탄성체 성형의 형상 정확도 예측)

  • Kim, K.T.;Lee, G.A.;Choi, S.;Lee, H.W.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.218-224
    • /
    • 2008
  • A recent trend in automotive parts has been an integration of sub-assemblies with unified shapes. Tube structures also have been integrated to one body structure by using a near net shape forming instead of adopting welding. A cylindrical elastomer-forming process can be utilized to form a steel tube compressed in a radial direction. This process has some advantages compared to a hydro-forming or a swaging process in the viewpoint of a lower investment and a higher productivity. In order to predict a feasible specification of products within a work capability of the elastomer-forming equipment developed previously, effects of geometrical parameters of a tube on its shape accuracy are examined. Two characteristic parameters to account for the shape accuracy are chosen. One is the curvature radius at the corner part and the other is the straight ratio of the formed region. Careful examination of two parameters has led that the shape accuracy can be easily predicted by the regression equation obtained from the response surface method.

Dynamic Characteristics of Cross-Ply Laminated Shells (CROSS-PLY 적층쉘의 동적특성에 관한 최적화 설계 연구)

  • Park, Sungjin
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.527-533
    • /
    • 2015
  • A simplified method for the calculation of dynamic characteristics of initially stressed antisymmetric cross-ply laminated shells is presented in this paper using the natural frequencies under unloading state. The equation of motion of laminated shell with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin shell theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of te dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented t verify the simplified equations and to illustrate potential applications of the analysis.

Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre

  • Katariya, Pankaj V.;Panda, Subrata K.;Hirwani, Chetan K.;Mehar, Kulmani;Thakare, Omprakash
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.595-605
    • /
    • 2017
  • The present article reported the thermal buckling strength of the sandwich shell panel structure and subsequent improvement of the same by embedding shape memory alloy (SMA) fibre via a general higher-order mathematical model in conjunction with finite element method. The geometrical distortion of the panel structure due to the temperature is included using Green-Lagrange strain-displacement relations. In addition, the material nonlinearity of SMA fibre due to the elevated thermal environment also incorporated in the current analysis through the marching technique. The final form of the equilibrium equation is obtained by minimising the total potential energy functional and solved computationally with the help of an original MATLAB code. The convergence and the accuracy of the developed model are demonstrated by solving similar kind of published numerical examples including the necessary input parameter. After the necessary establishment of the newly developed numerical solution, the model is extended further to examine the effect of the different structural parameters (side-to-thickness ratios, curvature ratios, core-to-face thickness ratios, volume fractions of SMA fibre and end conditions) on the buckling strength of the SMA embedded sandwich composite shell panel including the different geometrical configurations.

A failure criterion for RC members under triaxial compression

  • Koksal, Hansan Orhun
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.137-154
    • /
    • 2006
  • The reliable pushover analysis of RC structures requires a realistic prediction of moment-curvature relations, which can be obtained by utilizing proper constitutive models for the stress-strain relationships of laterally confined concrete members. Theoretical approach of Mander is still a single stress-strain model, which employs a multiaxial failure surface for the determination of the ultimate strength of confined concrete. Alternatively, this paper introduces a simple and practical failure criterion for confined concrete with emphasis on introduction of significant modifications into the two-parameter Drucker-Prager model. The new criterion is only applicable to triaxial compression stress state which is exactly the case in the RC columns. Unlike many existing multi-parameter criteria proposed for the concrete fracture, the model needs only the compressive strength of concrete as an independent parameter and also implies for the influence of the Lode angle on the material strength. Adopting Saenz equation for stress-strain plots, satisfactory agreement between the measured and predicted results for the available experimental test data of confined normal and high strength concrete specimens is obtained. Moreover, it is found that further work involving the confinement pressure is still encouraging since the confinement model of Mander overestimates the ultimate strength of some RC columns.

A Study on Influence of Ball Valve and Upstream Curved Pipe on Internal Flow of Pipeline (상류곡관에 의한 볼밸브 내부유동 영향성 연구)

  • JO, CHUL HEE;KIM, MYEONG JOO;CHO, SEOK JIN;HWANG, SU JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.463-468
    • /
    • 2015
  • This study describes the effect of upstream curved pipe on internal flow characteristics ball valve. Continuity and three-dimensional Reynolds-averaged Navier-Stokes equation have been used as governing equations for the numerical analysis. The upstream curved pipe - ball valve model was assumed that it is used for Alaska pipeline project which was planned to provide reliable transportation of natural gas from ANS to Alaska-Yukon border. Therefore the characteristics of pipe and operating condition of pipeline were from report of Alaska pipeline project. The three curvature and three location of upstream curved pipe were analyzed. The results shows that there are typical flow patterns at ball valve and the upstream curved pipe makes some differences to the internal flow of ball valve.