• Title/Summary/Keyword: curse of dimension

Search Result 14, Processing Time 0.019 seconds

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

Fused inverse regression with multi-dimensional responses

  • Cho, Youyoung;Han, Hyoseon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.267-279
    • /
    • 2021
  • A regression with multi-dimensional responses is quite common nowadays in the so-called big data era. In such regression, to relieve the curse of dimension due to high-dimension of responses, the dimension reduction of predictors is essential in analysis. Sufficient dimension reduction provides effective tools for the reduction, but there are few sufficient dimension reduction methodologies for multivariate regression. To fill this gap, we newly propose two fused slice-based inverse regression methods. The proposed approaches are robust to the numbers of clusters or slices and improve the estimation results over existing methods by fusing many kernel matrices. Numerical studies are presented and are compared with existing methods. Real data analysis confirms practical usefulness of the proposed methods.

Faults detection and identification for gas turbine using DNN and LLM

  • Oliaee, Seyyed Mohammad Emad;Teshnehlab, Mohammad;Shoorehdeli, Mahdi Aliyari
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Applying more features gives us better accuracy in modeling; however, increasing the inputs causes the curse of dimensions. In this paper, a new structure has been proposed for fault detecting and identifying (FDI) of high-dimensional systems. This structure consist of two structure. The first part includes Auto-Encoders (AE) as Deep Neural Networks (DNNs) to produce feature engineering process and summarize the features. The second part consists of the Local Model Networks (LMNs) with LOcally LInear MOdel Tree (LOLIMOT) algorithm to model outputs (multiple models). The fault detection is based on these multiple models. Hence the residuals generated by comparing the system output and multiple models have been used to alarm the faults. To show the effectiveness of the proposed structure, it is tested on single-shaft industrial gas turbine prototype model. Finally, a brief comparison between the simulated results and several related works is presented and the well performance of the proposed structure has been illustrated.

Comparative Analysis of Dimensionality Reduction Techniques for Advanced Ransomware Detection with Machine Learning (기계학습 기반 랜섬웨어 공격 탐지를 위한 효과적인 특성 추출기법 비교분석)

  • Kim Han Seok;Lee Soo Jin
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.117-123
    • /
    • 2023
  • To detect advanced ransomware attacks with machine learning-based models, the classification model must train learning data with high-dimensional feature space. And in this case, a 'curse of dimension' phenomenon is likely to occur. Therefore, dimensionality reduction of features must be preceded in order to increase the accuracy of the learning model and improve the execution speed while avoiding the 'curse of dimension' phenomenon. In this paper, we conducted classification of ransomware by applying three machine learning models and two feature extraction techniques to two datasets with extremely different dimensions of feature space. As a result of the experiment, the feature dimensionality reduction techniques did not significantly affect the performance improvement in binary classification, and it was the same even when the dimension of featurespace was small in multi-class clasification. However, when the dataset had high-dimensional feature space, LDA(Linear Discriminant Analysis) showed quite excellent performance.

Decomposable polynomial response surface method and its adaptive order revision around most probable point

  • Zhang, Wentong;Xiao, Yiqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.675-685
    • /
    • 2020
  • As the classical response surface method (RSM), the polynomial RSM is so easy-to-apply that it is widely used in reliability analysis. However, the trade-off of accuracy and efficiency is still a challenge and the "curse of dimension" usually confines RSM to low dimension systems. In this paper, based on the univariate decomposition, the polynomial RSM is executed in a new mode, called as DPRSM. The general form of DPRSM is given and its implementation is designed referring to the classical RSM firstly. Then, in order to balance the accuracy and efficiency of DPRSM, its adaptive order revision around the most probable point (MPP) is proposed by introducing the univariate polynomial order analysis, noted as RDPRSM, which can analyze the exact nonlinearity of the limit state surface in the region around MPP. For testing the proposed techniques, several numerical examples are studied in detail, and the results indicate that DPRSM with low order can obtain similar results to the classical RSM, DPRSM with high order can obtain more precision with a large efficiency loss; RDPRSM can perform a good balance between accuracy and efficiency and preserve the good robustness property meanwhile, especially for those problems with high nonlinearity and complex problems; the proposed methods can also give a good performance in the high-dimensional cases.

Smoothed Local PC0A by BYY data smoothing learning

  • Liu, Zhiyong;Xu, Lei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.3-109
    • /
    • 2001
  • The so-called curse of dimensionality arises when Gaussian mixture is used on high-dimensional small-sample-size data, since the number of free elements that needs to be specied in each covariance matrix of Gaussian mixture increases exponentially with the number of dimension d. In this paper, by constraining the covariance matrix in its decomposed orthonormal form we get a local PCA model so as to reduce the number of free elements needed to be specified. Moreover, to cope with the small sample size problem, we adopt BYY data smoothing learning which is a regularization over maximum likelihood learning obtained from BYY harmony learning to implement this local PCA model.

  • PDF

Reinforcement Learning Method Based Interactive Feature Selection(IFS) Method for Emotion Recognition (감성 인식을 위한 강화학습 기반 상호작용에 의한 특징선택 방법 개발)

  • Park Chang-Hyun;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.666-670
    • /
    • 2006
  • This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.

A comparison study of inverse censoring probability weighting in censored regression (중도절단 회귀모형에서 역절단확률가중 방법 간의 비교연구)

  • Shin, Jungmin;Kim, Hyungwoo;Shin, Seung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.957-968
    • /
    • 2021
  • Inverse censoring probability weighting (ICPW) is a popular technique in survival data analysis. In applications of the ICPW technique such as the censored regression, it is crucial to accurately estimate the censoring probability. A simulation study is undertaken in this article to see how censoring probability estimate influences model performance in censored regression using the ICPW scheme. We compare three censoring probability estimators, including Kaplan-Meier (KM) estimator, Cox proportional hazard model estimator, and local KM estimator. For the local KM estimator, we propose to reduce the predictor dimension to avoid the curse of dimensionality and consider two popular dimension reduction tools: principal component analysis and sliced inverse regression. Finally, we found that the Cox proportional hazard model estimator shows the best performance as a censoring probability estimator in both mean and median censored regressions.

Principal selected response reduction in multivariate regression (다변량회귀에서 주선택 반응변수 차원축소)

  • Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.659-669
    • /
    • 2021
  • Multivariate regression often appears in longitudinal or functional data analysis. Since multivariate regression involves multi-dimensional response variables, it is more strongly affected by the so-called curse of dimension that univariate regression. To overcome this issue, Yoo (2018) and Yoo (2019a) proposed three model-based response dimension reduction methodologies. According to various numerical studies in Yoo (2019a), the default method suggested in Yoo (2019a) is least sensitive to the simulated models, but it is not the best one. To release this issue, the paper proposes an selection algorithm by comparing the other two methods with the default one. This approach is called principal selected response reduction. Various simulation studies show that the proposed method provides more accurate estimation results than the default one by Yoo (2019a), and it confirms practical and empirical usefulness of the propose method over the default one by Yoo (2019a).

Interactive Feature selection Algorithm for Emotion recognition (감정 인식을 위한 Interactive Feature Selection(IFS) 알고리즘)

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.647-652
    • /
    • 2006
  • This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive Feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.