• Title/Summary/Keyword: current-mode comparison

Search Result 125, Processing Time 0.024 seconds

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

Studies on the Exhaust Gas Characteristics of the Vehicle Diesel according to the Test Mode and Ambient Temperature (시험모드 및 대기온도에 따른 경유자동차의 배출가스 특성에 관한 연구)

  • Lee, Jung-Cheon;Jeon, Cheol-Hwan;Kim, Ki-Ho;Oh, Sang-Gi;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.93-98
    • /
    • 2016
  • Environmental problems are issued throughout all over the world and which are needed the strength management. In case of the diesel cars are also being developing and studying continuously about various after-treatments device such as EGR, LNT, SCR, DPF and DOC etc. which are used for decreasing $NO_X$ and PM. The air temperature goes up to $39^{\circ}C$ in summer and goes down to $-20^{\circ}C$ in winter because of the location. These changing of the temperature can effect to the engine and harmful exhaust gas discharged and it seems to make the increase - decrease different. The result of the evaluate while changing between the test-mode and the air temperature, which expresses that WLTC-mode is 2.2 times and FTP_75 mode is 4.1~6 times increase to the comparison NEDC-mode of the current regulation. The exhaust characteristic of $NO_X$ by the changing temperature increases in the low temperature and 4.3 times in $14^{\circ}C$ and 21.3 times in $-7^{\circ}C$ with maximum when it compares to $23^{\circ}C$. The fuel efficiency of the different weight car and engine with same data is about 5.7 % in maximum.

Research about ESPI System Algorithm Development that Use Modulating Laser (Modulating Laser를 이용한 ESPI System algorithm 개발에 관한 연구)

  • Kim, Seong-Jong;Kang, Young-June;Park, Nak-Kyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.65-72
    • /
    • 2009
  • Laser interferometry is widely used as a measuring system in many fields because of its high resolution and its ability to measure a broad area in real-time all at once. In conventional laser interferometry, for example out-of-plane ESPI (Electronic Speckle Pattern Interferometry), in plane ESPI, shearography and holography, it uses PZT or other components as a phase shift instrumentation to extract 3-D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include nonlinear errors and limited time of use. In the present study, a new type of laser interferometry using a laser diode is proposed. Using Laser Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can be directly modulated by controlling the laser diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD (Laser Diode) Modulating interferometry that involves four-frame phase shift method. This study proposes a four-frame phase mapping algorithm, which was developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, the theory for LD wavelength modulation and sinusoidal phase modulation of LD modulating interferometry is shown. Using modulating laser and research of measurement algorithm does comparison with existent ESPI measurement algorithm. Algorithm measures using GPIB communication through most LabVIEW 8.2. GPIB communication does alteration through PC. Transformation of measurement object measures through modulating laser algorithm that develops. Comparison of algorithm of modulating laser developed newly with existent PZT algorithm compares transformation price through 3-D. Comparison of 4-frame phase mapping, unwrapping, 3-D is then introduced.

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

A Novel Three-Phase Line-Interactive UPS System having AC Line Reactor and Parallel-Series Active Filters (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 라인 인터렉티브 무정전전원장치 시스템)

  • Ji Jun-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.193-197
    • /
    • 2004
  • The four-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. In this paper a novel line interactive Uninterruptible Power Supply(UPS) using the two four-leg VSCs is proposed. One VSC is in parallel with the ac link reactor of the power source side, and the other is in series with the load. The parallel four-leg voltage source inverter controls the three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series four-leg voltage source inverter compensates the line voltage and allows it to be balanced and harmonic-free. Both of the parallel and series four-leg voltage source inverters always act as independently controllable voltage sources, so that the three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulations results.

  • PDF

Influence of shear on seismic performance and failure mode of RC piers (전단이 RC 교각의 지진성능 및 파괴모드에 미치는 영향)

  • Lee, Do-Hyeong
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2004
  • In this paper, influence of shear on the seismic performance and failure mode of reinforced concrete piers subjected to earthquake loading is investigated. Comparative study has been carried out for reinforced concrete column tests to verify the shear-axial interaction model presented in this paper. Comparison shows that predicted shear hysteretic response agrees well with the test results. Also conducted is a nonlinear time-history analysis of a reinforced concrete bridge damaged by the Kobe earthquake using the current development. Displacement response for piers reveals that maximum displacement is considerably increased due to the effect of shear coupled with axial force variation, which leads to overall stiffness degradation and period elongation. It is therefore concluded that the response considering both shear and axial force gives better explanation regarding the seismic damage evaluation of reinforced concrete bridge piers.

  • PDF

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

A Single-Phase Active Power Filter Control with Load Current Estimation Method (부하전류 추정기법에 의한 단상능동전력필터 제어)

  • 곽상신;이무영;최연호;임성운;권우현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.335-342
    • /
    • 2000
  • A new control method for a single-phase active power filter, based on a load current estimation using a DC capacitor voltage of active power filter without sensing nonlinear load current, is proposed in this paper. Because the method proposed can remove the load current sensor in comparison with a conventional method sensing the load current and DC capacitor voltage together, it can make the active power filter easy installation, low cost, small size with no performance detriment. In addition, sample-hold technique and proportional control method is adopted to control the DC capacitor voltage and as no delay element such as LPF or PI control in the conventional method is used, the transient response is fast and good. Operation of a single-phase active power filter which consist of eight mode is explained according to utility voltage, compensation current and switch state, and compensation characteristics of active power filter using proposed method is verified by experiment.

  • PDF

A Quality Assurance Process Model on Fault Management

  • Kim, Hyo-Soo;Baek, Cheong-Ho
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.163-169
    • /
    • 2006
  • So far, little research has been conducted into developing a QAPM (Quality Assurance Process Model) for telecommunications applications on the basis of TMN. This is the first trial of the design of TMN-based QAPM on fault management with UML. A key attribute of the QAPM is that it can easily identify current deficiencies in a legacy system on the basis of TMN architecture. Using an empirical comparison with the legacy systems of a common carrier validates the QAPM as the framework for a future mode of the operation process. The results indicate that this paper can be used to build ERP(Enterprise Resource Planning) for a telecommunications fault management solution that is one of the network management application building blocks. The future work of this paper will involve applying the QAPM to build ERP for RTE (Real Time Enterprise) fault management solution and more research on ERP design will be necessary to accomplish software reuse.