• Title/Summary/Keyword: current-effect

Search Result 10,201, Processing Time 0.037 seconds

Problems and Countermeasures in Installation of Down Conductor Systems (인하도선시스템 시설에서의 문제점과 대책)

  • 이복희;이동문;강성만;엄주홍;정동철;이승칠;안창환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2002
  • This paper describes the technical issues of the domestic standard and guideline for lightning protection systems in order to propose the countermeasures in damage of computer and electronic equipments due to lightning surges. The relationship between the current flow in the down conductor and the current flow in the steel conduit surrounding the down conductor was investigated as a function of the installation method of down conductors. Also the experiments were conducted to evaluate the influences of the skin effect on the down conductor systems. As a result, when the down conductor were bonded to the steel conduit, the down conductor and the steel conduit act as one conductor, so much mure lightning current flows in the steel conduit than in the copper down conductor because of the skin effect and choking effect. Therefore to reduce the adverse effects such as the electrostatic induction and side flashes caused by the potential rise of down conductors due to lightning currents, it is extremely effective to bond the down conductor to the steel conduit and steel frame of structures.

Inhibitory Effect of Caffeine on Carbachol-Induced Nonselective Cationic Current in Guinea-Pig Gastric Myocytes

  • Kim, Sung-Joon;Min, Kyung-Wan;Kim, Young-Chul;Lee, Sang-Jin;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.353-359
    • /
    • 1998
  • In gastrointestinal smooth muscle, muscarinic stimulation by carbachol (CCh) activates nonselective cation channel current ($I_{CCh}$) which is facilitated by intracellular [$Ca^{2+}$] increase. Caffeine is widely used in experiments to mobilize $Ca^{2+}$ from intracellular stores. This study shows a strong inhibitory effect of caffeine on $I_{CCh}$ in guinea-pig gastric myocyte. In this study, the underlying mechanism of the inhibitory effect of caffeine was investigated. $I_{CCh}$ was completely suppressed by the addition of caffeine (10 mM) to the superfusing solution. Inhibition of $I_{CCh}$ by caffeine was not related to the intracellular cAMP accumulation which was expected from the phosphodiesterase-inhibiting effect of caffeine. The blockade of $InsP_3-induced$ $Ca^{2+}$ release by heparin had no significant effects on the activation of $I_{CCh}$. When the same cationic current had been induced by intracellular dialysis of $GTP[{\gamma}S]$ in order to bypass the muscarinic receptor, the inhibitory effect of caffeine was significantly attenuated. The results of this study indicate that both intracellular signalling pathways for $I_{CCh}$, proximal and distal to G-protein activation, are suppressed by caffeine. A major inhibition was observed at the proximal level.

  • PDF

Field-effect Ion-transport Devices with Carbon Nanotube Channels: Schematics and Simulations

  • Kwon Oh Kuen;Kwon Jun Sik;Hwang Ho Jung;Kang Jeong Won
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.787-791
    • /
    • 2004
  • We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that car be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, ther nal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  • PDF

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 충지진하중)

  • 이동근;이석용;신용우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.73-78
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used for its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumption that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode. Therefore proper prediction of dynamic responses of the structure is unreliable using the equivalent lateral force procedure when the effect of higher vibration modes on the dynamic behavior is negligible. In this study design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum are examined. From these results improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes is proposed.

  • PDF

A Study for Improving Surface Roughness and Micro-deburring Effect of Nitinol Shape Memory Alloy by Electropolishing (니티놀 형상기억합금의 표면 거칠기 향상 및 미세 버 제거를 위한 마이크로 전해연마의 가공특성 분석)

  • Shin, Min-Jung;Baek, Seung-Yub;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.49-54
    • /
    • 2007
  • Electropolishing, the anodic dissolution process without contact with tools, is a surface treatment method to make a surface planarization using an electrochemical reaction with low current density. Nitinol is a metal alloy composed of Ni and Ti around 50% respectively which has shape memory effect. Nitinol can be put various applications which require purity and high pricision surface of products. The aim of this study is to investigate the characteristic of electropolishing effect for nitinol workpieces. In order to analyze the characteristics of electropolishing effect, surface roughness and micro-burr size were measured in terms of machining conditions such as current density, machining time and electrode gap. The tendencies about improvement of surface roughness and deburring effect by electropolishing for nitinol workpieces were determined.

Analysis of Tunnelling Rate Effect on Single Electron Transistor

  • Sheela, L.;Balamurugan, N.B.;Sudha, S.;Jasmine, J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1670-1676
    • /
    • 2014
  • This paper presents the modeling of Single Electron Transistor (SET) based on Physical model of a device and its equivalent circuit. The physical model is derived from Schrodinger equation. The wave function of the electrode is calculated using Hartree-Fock method and the quantum dot calculation is obtained from WKB approximation. The resulting wave functions are used to compute tunneling rates. From the tunneling rate the current is calculated. The equivalent circuit model discuss about the effect of capacitance on tunneling probability and free energy change. The parameters of equivalent circuit are extracted and optimized using genetic algorithm. The effect of tunneling probability, temperature variation effect on tunneling rate, coulomb blockade effect and current voltage characteristics are discussed.

Design of the RLG Current Stabilizer for Attitude Control in the Satellite (저궤도 위성 자세제어용 RLG 전류 안정화 회로 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.98-101
    • /
    • 2008
  • In this paper, we describe the RLG current stabilizer circuit for attitude control in the satellite. The RLG makes use of the Sagnac effect within a resonant of a HeNe laser. The difference between two discharge currents causes one of the gyro bias errors. The theoretical background and current stabilizer are introduced. It is verified that the circuit designed is applicable to the test of input voltage and temperature.

Subthreshold Current Model of FinFET Using Three Dimensional Poisson's Equation

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • This paper has presented the subthreshold current model of FinFET using the potential variation in the doped channel based on the analytical solution of three dimensional Poisson's equation. The model has been verified by the comparison with the data from 3D numerical device simulator. The variation of subthreshold current with front and back gate bias has been studied. The variation of subthreshold swing and threshold voltage with front and back gate bias has been investigated.

Full HD AMOLED Current-Programmed Driving with Negative Capacitance Circuit Technology

  • Hattori, Reiji;Shim, Chang-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1093-1096
    • /
    • 2008
  • The circuit simulation has been done on the current-programmed AMOLED and shows that the circuit which behaves as a negative capacitance can reduce the effect of parasitic capacitance fixed on the data-line and can accelerate the current programming speed as high as that required in Full HD AMOLED.

  • PDF

Torque Control Scheme of Switched Reluctance Motor using Neural Network (신경회로망을 이용한 SRM의 토오크 제어)

  • 정연석;이장선;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.171-174
    • /
    • 1999
  • The torque of SRM is developed by phase currents and inductance variation. Phase currents and inductance variation. Phase current is often the controlled variable in electrical motor drives, so it seems natural to use closed loop current controllers. However, the highly nonlinear nature of switched reluctance motors makes optimisation of closed loop current controlled difficult because of saturation effect in magnetic circuit. Therefore, torque generation region is nonlinearly varied according to phase current and rotor position. This paper describes the torque control scheme with neural network that can control varied with load torque. The torque control is simulated by PSIM.

  • PDF