• Title/Summary/Keyword: current unbalance

Search Result 263, Processing Time 0.022 seconds

The Compensating Unbalanced Source Voltages for Unified Active Power Filter System (직.병렬 능동 전력필터 시스템을 이용한 불평형 전원전압 보상)

  • Kim, Young-Seok;Kang, Min-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.716-723
    • /
    • 2007
  • This paper suggests of a 3-phase 3-wire unified active power filter. The system is composed of a series active power filter and a parallel active power filter. The proposed series active power filter compensating unbalance source voltage and current harmonics of the parallel active power filter improves power factor. The proposed algorithm which improves for power factor and harmonic reduction are calculated by the performance function, and which compensates for the unbalanced source voltage is calculated based on the symmetrical component analysis. We composed a combined system of the series active power filter and parallel active power filter to confirm a validity of the proposed control methods. The effectiveness of the proposed algorithm is confirmed by the experiments.

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

Characteristics Analysis of Induction Motor by Operation of Non- linear Loads under the 3-phase 4-wire grid system (3상 4선식에서 비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Wong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Moors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

Study on current control loop error MPPT controller using the power balance/unbalance boundary point control (전력 평형/불평형 경계점 제어를 이용한 전류제어루프에러 MPPT제어기에 관한 연구)

  • Kang, T.K.;Koh, K.H.;No, S.S.;Kang, J.S.;Lee, J.Y.;Woo, J.I.;Lee, H.W.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.292-297
    • /
    • 2005
  • This paper proposes a simple MPPT control scheme of a Current-Control-Loop Error system Based that can be obtains a lot of advantage to compare with another digital control method, P&O and IncCond algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment on battery charger using PIC that is the microprocessor of a low price.

  • PDF

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

Current Unbalance Improved Half-bridge LLC Resonant Converter using the Two Transformers (두 개의 변압기를 이용한 전류불균형 개선 하프브리지 LLC 공진형 컨버터)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.497-507
    • /
    • 2010
  • This paper presents current unbalance improved half-bridge LLC resonant converter using the two transformers with different leakage inductances. The proposed converter resonates with the leakage inductance and magnetizing inductance of the transformer and the resonant capacitance. The converter operates in a wide load range and satisfies the zero voltage switching even under the light load. The series-parallel connected two transformers act as the transformers or the resonant inductances according to the operational modes, and the separate output filter inductance in the transformer secondary is not needed using the leakage inductance. The current unbalance of the secondary diode rectifier is improved using the different leakage inductances of the two transformers and the asymmetrical pulse-width modulation (PWM). In this paper, the operational principle of the converter is explained by the modes, and the design example for the prototype is also shown. To validate the performance of the converter, the prototype is implemented as the designed circuit parameters and the good performance of the proposed converter is shown through the experimental results

Reduction of the Unbalanced Three Phase Input Current by Variable Notch Filter in Active AC Electronic Load (가변 노치필터에 의한 능동형 AC 전자부하의 3상 전류 불평형 저감)

  • Kim, Do-Yun;Lee, Jung-Hyo;Lee, Yong-Seok;Jung, Doo-Yong;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 2012
  • In this paper, the test bed using three-phase PWM converter connected with single phase inverter in series is set up to configure an active AC electric load. Since the two topologies, three-phase PWM converter and single-phase inverter, can be operated bidirectionally, the system not only re-generates surplus power to grid but also prevents power dissipation. However, the construction of system has a drawback. That is, ripple components two times of inverter operation frequency occur at DC-Link due to cascade connection, it can be cause of three phase unbalance Since the operational characteristic of the active AC electric load, the power frequency entered into the electric load can be varied, and the ripple of DC-Link is changed as well. In this paper, the three-phase PWM converter using a variable notch filter is proposed, and the reduction of three-phase current unbalance is presented. the validity of the proposed PWM converter using a variable notch filter is verified by the simulation and experimental results.

A Study on the Transient Characteristic and Protection Schemes of Sheath Circulating Current Reduction Equipment (시스 순환전류 저감장치의 과도특성 및 보호방식에 관한 연구)

  • 강지원;한용희;정채균;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.421-428
    • /
    • 2003
  • After the cable is installed, many geometric factors, such as bowing types of the cable and the length difference of the cable between each minor section will cause the impedance unbalance between cables. The impedance unbalance will increase or decrease the sheath circulating currents, which are critical to human safety and sustaining the capabilities of electric power. Accordingly, in this paper, a new method is also proposed to reduce the sheath circulating currents and an reduction equipment according to the theory of the new method is developed. The reduction equipment is tested when the cable is on service. The test results show that it can reduce the sheath circulating currents by up to 97.8[%]. This confirms the validation of the new method and the reduction equipment, and assures the safe operation of the transmission cables. In order to illustrate the safe operation of the cable with new current reduction equipment at transient state due to lightning and single line-to-ground fault, extensive simulations have been made. Then the protection scheme of sheath circulating currents reduction equipment is proposed by adopting the new device of RDP(Reduction Device Protector).

A Study on MPPT Control using the Maximum Power Balance/Unbalance Boundary Point Control (최대 전력 평형/불평형 경계점 제어를 이용한 MPPT제어에 관한 연구)

  • Koh Kang-Hoon;Kang Tae-Kyeng;Lee Hyun-Woo;Woo Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • This paper proposes a simple MPPT control scheme of a based Current-Control-Loop system that can be obtains a lot of advantage to compare with another digital control method, P&O(Perturbation and Observation) and IncCond(Incremental Conductance) algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance Problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment results on battery charger using PIC that is the microprocessor of a low price.

Unbalance Control Strategy of Boost Type Three-Phase to Single-Phase Matrix Converters Based on Lyapunov Function

  • Xu, Yu-xiang;Ge, Hong-juan;Guo, Hai
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.89-98
    • /
    • 2019
  • This paper analyzes the input side performance of a conventional three-phase to single-phase matrix converter (3-1MC). It also presents the input-side waveform quality under this topology. The suppression of low-frequency input current harmonics is studied using the 3-1MC plus capacitance compensation unit. The constraint between the modulation function of the output and compensation sides is analyzed, and the relations among the voltage utilization ratio and the output compensation capacitance, filter capacitors and other system parameters are deduced. For a 3-1MC without large-capacity energy storage, the system performance is susceptible to input voltage imbalance. This paper decouples the inner current of the 3-1MC using a Lyapunov function in the input positive and negative sequence bi-coordinate axes. Meanwhile, the outer loop adopts a voltage-weighted synthesis of the output and compensation sides as a cascade of control objects. Experiments show that this strategy suppresses the low-frequency input current harmonics caused by input voltage imbalance, and ensures that the system maintains good static and dynamic performances under input-unbalanced conditions. At the same time, the parameter selection and debugging methods are simple.