• 제목/요약/키워드: current unbalance

검색결과 263건 처리시간 0.021초

비선형 부하의 운전시 유도전동기의 특성 해석 (Characteristics Analysis of Induction Motor by Operation of Non-lineal Loads)

  • 김종겸;박영진;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.147-153
    • /
    • 2006
  • Voltage unbalance will be generated by the load unbalance operation such as combination operation of single & three phase load and current unbalance will be more severe by the deteriorated voltage quality. Under the these unbalance conditions, all power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. it may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration. This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system by the unbalance and harmonic components. It was able to confirm that the number of torque pulsation decreased and torque ripple values increased by the harmonics that reduction was difficult by five harmonics filters at additional driving time of single-phase non-linear load.

  • PDF

전원 전압 불평형시 계통연계형 인버터의 유효전력 리플 억제를 위한 듀얼 전류제어기 구현과 출력 전력의 실시간 제한 알고리즘 (Implementation of Dual Current Controller and Realtime Power Limiting Algorithm in Grid-connected Inverter during Unbalanced Voltage Conditions)

  • 송승호;김정재
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.54-60
    • /
    • 2006
  • A power limiting algorithm is proposed for stable operation of grid-connected inverter in case of grid voltage unbalance considering the operation limit of inverter. During the voltage unbalance the control performance of Inverter. is degraded and the output power contains 120Hz ripple due to the negative sequence of voltage. In this paper, conventional dual sequence current controller is implemented to solve these problems using separated control of positive and negative sequence. Especially the maximum power limit which guarantees the maximum rated current of the inverter is automatically calculated as the instant grid voltage changes. As soon as the voltage recovers the proposed algorithm can return to the normal power control mode accomplishing low voltage ride through. Proposed algorithm is verifed using PSCAD/EMTDC simulations and tested experimentally at 4.4kW wind turbine simulator set-up.

3상 양방향 인버터의 계통전압 불평형 및 왜곡에 의한 계통전류 불평형 및 왜곡 보상 (A Compensation of the Grid Current Unbalance and Distortion caused by the Grid Voltage Unbalance and Distortion in 3-Phase Bi-Directional DC to AC Inverter)

  • 양승대;김승민;최주엽;최익;송승호;이상철;이동하
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.161-168
    • /
    • 2013
  • This paper presents an algorithm of a compensation of the grid current distortion caused by the grid voltage unbalance and distortion in 3-phase bi-directional DC to AC inverter. Usually 3-phase grid system has unbalance and distortion because of connecting 1-phase and non-linear load with 3-phase load using same input node. Controlling 3-phase inverter by general method under the unbalanced and distorted grid voltage, the grid current has distortion. This distortion of the grid current cause the grid voltage distortion again. So, it need to control the grid current balanced and non-distorted, even the grid voltage gets unbalanced and distorted. There are some complex method to compensate the gird current distortion. it suggest simple method to solve the problem. Simulation and experiment is used to validate the proposed algorithm.

4단자 회로망 모델을 이용한 전기철도 차량기지의 전압불평형 해석 (Analysis of Voltage Unbalance in the Electric Railway Depot Using Two-port Network Model)

  • 창상훈;오광해;김정훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권5호
    • /
    • pp.248-254
    • /
    • 2001
  • The traction power demand highly varies with time and train positions and the traction load is a large-capacity current at single phase converted from 3-phase power system. Subsequently, each phase current converted from 3-phase power system cannot be maintained in balance any longer and thus the traction load can bring about imbalance in three-phase voltage. Therefore, the exact assessment of voltage unbalance must be carried out preferentially as well as load forecast at stages of designing and planning for electric railway system. The evaluation of unbalance voltage in areas, such as electric railway depots should be a prerequisite with more accuracy. The conventional researches on voltage unbalance have dealt with connection schemes of the transformers used in ac AT-fed electric railroads system and induced formulas to briefly evaluate voltage unbalance in the system(3). These formulas are still being used widely due to their easy applicabilities on voltage unbalance evaluation. Meanwhile, they don't take into account detailed characteristics of ac AT-fed electric railroads system, being founded on some assumptions. Accordingly. accuracy still remains in question. This paper proposes a new method to more effectively estimate voltage unbalance index. In this method, numerous diverted circuits in electric railway depots are categorized in three components and each component is defined as a two-port network model. The equivalent circuit for the entire power supply system is also described into a two-port network model by making parallel and/or series connections of these components. Efficiency and accuracy in voltage unbalance calculation as well can be promoted by simplifying the circuits into two-port network models.

  • PDF

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가 (Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis)

  • 오광해;차준민
    • 조명전기설비학회논문지
    • /
    • 제12권4호
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF

공극 불균형이 경전철용 LIM의 특성에 미치는 영향 (The Effect of Airgap Unbalance on the LIM Performance for Light Rail Road)

  • 정인성;이주;정락교;이종우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.129-136
    • /
    • 1998
  • The LIM can be used as a transport system with wheel structure. The structural tolerance cause the airgap unbalance and that effects on the LIM performance. The effect of airgap unbalance on the motor performance such as thrust force, velocity and armature current are investigated by using Finite Element Analysis (FEA). From this numerical works, it is known that the airgap unbalance almost does not effect on the motor performance and LIM for transport system is robust to the structural tolerance.

  • PDF

초고압 송전선로의 다도체 구성에 따른 불평형 전류 해석 (Unbalace Current Analysis on the Bundled Conductors of the UHV Overhead Transmission Line)

  • 정연호;이형권;손홍관;조연규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1379-1381
    • /
    • 1999
  • The unbalance current on the bundled conductors of the UHV overhead transmission line is one of the factors affected on power transmission system. It is varied by distance between of bundled conductors and of phase to phase, phase arrangement. In this paper, we calculated unbalance current on the bundled conductors by a variety of line arrangements and also calculated magnetic field at the circumference of the line fed with this unbalance current.

  • PDF

선간전압과 상전압에 대한 전압불평형율의 비교 (Comparison of Voltage Unbalance Factor for Line and Phase Voltage)

  • 김종겸;박영진;이은웅
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권9호
    • /
    • pp.403-407
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetric components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved by the unbalanced load at the 3-phase 4-wire system. Line and phase voltage unbalance leads to different results due to zero-sequence component. So that it is difficult to analyse voltage unbalance factor by the conventional analytical method, This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

Study on the Influence of Grid Voltage Quality on SVG and the Suppression

  • Yi, Guiping;Hu, Renjie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.155-161
    • /
    • 2014
  • Industrial Static Var Generator (SVG) is typically applied at or near the load center to mitigate voltage fluctuation, flicker, phase unbalance, non-sine distortion or other load-related disturbance. Special attention is paid to the influence of grid voltage quality on SVG current, the non-sine distortion and unbalance of grid voltage causes not only the AC current distortion and unbalance but also the DC voltage fluctuation. In order to let the inverter voltage contain the fundamental negative sequence and harmonic component corresponding to the grid voltage, a new dual-loop control scheme is proposed to suppress the influence in this paper. The harmonic and negative sequence voltage decomposition algorithm and DC voltage control are also introduced. All these analyses can guide the practical applications. The simulation results verify the feasibility and effectiveness of the present control strategy and analyses.