• Title/Summary/Keyword: current reversal method

Search Result 26, Processing Time 0.038 seconds

Measuring electrical parameters of ferroelectric liquid crystals using universal current reversal method

  • Sood, N.;Khosla, S.;Singh, D.;Bawa, S.S.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.129-134
    • /
    • 2011
  • The universal current reversal method is used for the simultaneous measurement of response time (${\tau}$), azimuthal angle (${\varphi}_o$), spontaneous polarization ($P_S$), and rotational viscosity (${\gamma}_{\varphi}$) of two ferroelectric liquid crystals (FLCs). The application of AC field in FLCs results in reorientational current, which is further analyzed to obtain various parameters. The variation in the parameters with temperature follows the typical trend predicted by the theory. The theoretical curve fits well into the experimental data. Its comparison with traditional current reversal method is confirmed to address certain limitations of that method.

Experiment on the Time-Reversal of Lamb Waves for the Application to Structural Damage Detection (구조물 손상진단을 위한 Lamb 파의 시간-역전현상에 대한 실험)

  • Go, Han-Suk;Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.913-916
    • /
    • 2007
  • In this paper, the possibility of time reversal phenomenon was investigated in damage detection of structure. In conventional lamb wave techniques, damage is identified by comparing the measured data (baseline signals) and the current data. But this method can lead to high false signal in the intact condition of structures due to environmental conditions of the structures. So in this studying, we investigate the possibility of damage detection in the aluminum plate using the time reversal phenomenon of lamb waves.

  • PDF

Characteristics Analysis of Flux-Reversal Machine considering BEMF Current (역기전력 전류를 고려한 자속 역전식 기기의 특성 해석)

  • Kim Tae Heoung;Lee Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.709-717
    • /
    • 2004
  • Flux-reversal machine (FRM) is a new brushless doubly salient permanent magnet machine. Its operation is similar to that of the brushless DC motor, so it can be driven by 120 degree square wave voltage and use PWM pulse patterns in two-phase feeding scheme to control the speed. In this driving method, the back electromotive force (BEMF) current in the open phase is generated by the BEMF. It can be appeared or disappeared according to the changes of the neutral voltage of the machine. In this paper, the time-stepped voltage source finite-element method taking BEMF current into account is proposed. Its influences on the performances of the FRM are also investigated. To prove the propriety of the proposed analysis method, a Digital Signal Processor (DSP) installed experimental devices are equipped and the experiment is performed.

Numerical Analysis of a Flux-Reversal Machine with 4-Switch Converters

  • Lee, Byoung-Kuk;Kim, Tae-Heoung
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.124-128
    • /
    • 2012
  • Many different converter topologies have been developed with a view to use the minimum number of switches in order to reduce construction costs. Among this research, the four-switch converter topology with a novel PWM control technique based on the current controlled PWM method is thought to be a good solution. In this paper, a two dimensional time-stepped voltage source finite-element method (FEM) is used to analyze the characteristics of a Flux-Reversal Machine (FRM) with a 4-switch converter. To validate the proposed computational method, a digital signal processor (DSP) installed controller and prototype FRM are built and experiments performed.

Smart Far-Field Wireless Power Transfer via Time Reversal (시간 역전을 기반으로 한 지능적 원거리 무선전력전송)

  • Park, Hong Soo;Hong, Ha Young;Hong, Sun K.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.285-289
    • /
    • 2018
  • In this paper, we demonstrate electromagnetic wave focusing and rectification based on time reversal as a smart method for far-field wireless power transfer. Time reversal in a complex propagation environment allows for transmission of high peak power pulses by focusing the electromagnetic waves selectively regardless of the receiver position. We demonstrate wave focusing and radio frequency (RF) to direct current (DC) rectification via numerical simulation of a complex propagation environment. The results reveal that time reversal can ensure peak power up to 12 dB greater compared to a narrowband continuous wave signal, thereby enhancing the rectified DC voltage with better efficiency.

Comparative Analysis of Flux-Reversal Motors with Six-Switch and Four-Switch Converters

  • Kang, Hyun-Soo;Lee, Byoung-Kuk;Kim, Tae Heoung
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • In this paper, the 6-switch inverter for the Flux-Reversal Motor (FRM) has been presented and compared to the 4-switch inverter for the FRM, which is more popular in cost effective applications. To analyze the FRM, we adopted the two-dimensional time-stepped voltage source finite element method (FEM) that uses the actual pulse width modulation (PWM) voltage waveforms as the input data. As the FRM characteristic analysis of actual pwm voltage input, the torque ripples and iron losses (eddy current and hysteresis loss) of the FRM can be precisely calculated. With the simulated and experimental results, the performance and limitations of the 4-switch FRM which is the cost effective drive compared to the 6-switch FRM drive are provided in more detail.

Novel PWM Method with Low Ripple Current for Position Control Applications of BLDC Motors

  • Kim, Hag-Wone;Shin, Hee-Keun;Mok, Hyung-Soo;Lee, Yong-Kyun;Cho, Kwan-Yuhl
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.726-733
    • /
    • 2011
  • BLDC Motors are widely used in various speed control applications due to their ease of control and low cost. Generally, the unipolar PWM method is used for speed control applications. However, the unipolar PWM method has a current spike problem in the braking operation which can be a problem in speed reversal which generally happens in position control applications. However, the current spike problem can be solved by the conventional bipolar PWM method. Although the current spike problem can be solved, the conventional bipolar PWM method has the problem of a large current ripple. In this paper, a novel bipolar PWM method is proposed to solve this problem. The current ripple and the current spike problems are analyzed in this paper for the unipolar and bipolar PWM methods. At last, the merits of the proposed bipolar PWM method are proven by experiment.

Analysis of Lead in Blood using SR(self-reversal) and $D_2$ Arc Background Correction Methods (SR 바탕보정법과 $D_2$ 바탕보정법에 의한 혈액 중 Pb 분석)

  • Lee, Seokki;Kim, Poongzag
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.427-434
    • /
    • 1994
  • For the analysis of the relatively volatile lead in blood by GFAAS(graphite furnace atomic absorption spectrophotometer), one can not raise the ashing temperature beyond certain degree due to the elevation of the baseline. Previous investigations showed that background is stabilized when the ashing temperature is raised to $700^{\circ}C$ using a matrix modifier. In this study, same result was obtained at the ashing temperature of around $550^{\circ}C$ even when the matrix modifier is not used and only Triton X-100 is used as a diluent, on an instrument which is equipped with both temperature and current controller(Shimadzu, AA-6501S) and thus the temperature control is fast and accurate. Background correction methods of $D_2$ arc and SR(self reversal) were reviewed. The results show that the absorbance is higher for the $D_2$ arc method, but the background correction is higher for the SR method.

  • PDF

A Model Study for Electrical Resistivity Method Using Three-Point Electrode Array (Three-Point 전극(電極) 배열법(配列法)을 이용(利用)한 전기(電氣) 비저항탐사(比抵抗探査) 모형연구(模型硏究))

  • Min, Kyung Duck;Kim, Chong Mi
    • Economic and Environmental Geology
    • /
    • v.14 no.3
    • /
    • pp.111-122
    • /
    • 1981
  • This study is a model analysis for an effective application of the geophysical prospecting to the investigation of geological structures or useful resources, and the purpose of it is to research a property of the electrical resistivity prospecting, especially by using a Three-Point electrode array method. In using the Three-Point electrode array method, it is theoretically assumed to choose the infinite for a distance between the two current electrodes, however it is impossible in applying to the practical field prospecting. Therefore this study was conducted for determination and presentation of a minimum appropriate distance between the two current electrodes by making a study on prospecting effect in the variation of distance between both the electrodes. In case that the ratios of the distance between the two current electrodes to that between the two potential electrodes are respectively chosen for 40, 400, 5,000, the experimental data of this study showed that the minimum appropriate distance between the two current electrodes is forty times as much as that between two potential electrodes. In order to make clear a problem about prospecting depth which is essential to the data processing, it had been chosen equally to the distance between two potential electrodes. As a result of it, it was shown that the anomaly is appeared along the position of an assumed ore body. Consequently it was found out that the prospecting depth of the Three-Point electrode array method is the same as the distance between the two potential electrodes. From the model experiment on the sheeting ore body(or linear structure) of horizontal, dipping of $30^{\circ}$, $60^{\circ}$ and vertical on the basis of above experimental condition, it was found out that the position and dip of assumed ore body could be inferred from the aspects of the equiresistivity curve. In consequence of performing out the simultaneous Normal and Reversal electrode movement, it was shown that the electrode movement of the Reversal forms the anomaly more clearly than that of Normal when the sheeting ore body is situated obliquely, therefore it could be ascertained that the electrode movement have to be performed simultaneously in the manner of Normal and Reversal. It was also exhibited that the aspect of the equiresistivity curve forms symmetrically when an assumed ore body (or linear structure) is situated horizontally or vertically, that is, symmetrically, and moreover that the aspect of the equiresistivity curve forms unsymmetrically when an assumed ore body (or linear structure) is situated obliquely. On the basis of these experimental analysis it is thought that it can be inferred from the aspect of equiresistivity curve whether an assumed ore body is obliquely situated or not.

  • PDF

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF