• Title/Summary/Keyword: current moisture content

Search Result 113, Processing Time 0.021 seconds

Red Pepper Drying with Solar Energy in Greenhouse (온실을 이용한 홍고추의 건조)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Kang, Jong-Guk;Shino, Kazuo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.256-260
    • /
    • 2001
  • This study was initially performed to investigate current red-pepper drying methods commonly being adopted on red-pepper cultivation farm area. Based on the informations obtained from the field survey, an experiment of red-pepper drying was carried out to verify the actual drying potential of plastic covered solar house similar to the conventional pipe frame greenhouses covered with one or two layer of plastic film. Some results obtained from field survey and drying experiment for red-pepper are summarized as follows; 1. Various patterns of red-pepper drying process were found; 1) complete natural drying with red-pepper exposed in outdoor air, 2) hot air drying by dry chamber only, 3) combination drying by hot air dryer together with plastic covered passive solar house, 4) drying with plastic covered solar house unit. 2. The average air temperatures of outdoor and solar house during drying experiment period were $26.9-30.8\;and\;28.6-33.8^{\circ}C$, respectively, and the maximum air temperatures of those two were $34.2-36.4\;and\;39.8\;-52.3^{\circ}C$, respectively. Horizontal solar intensity during experiment period was $18.49-23.96\;MJ/m^{2}$, and relative humidity of outdoor and experimental solar house were 56 - 66% and 64 - 70%, respectively. 3. The weight of red-pepper during drying experiment period was decreased almost linearly from initial moisture content of 85% to final moisture content of 14%.

  • PDF

Optimization of Drying Conditions for Quality Semi-dried Mulberry Fruit (Morus alba L.) using Response Surface Methodology

  • Teng, Hui;Lee, WonYoung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Mulberry fruits were semi-dried using hot air ($60-100^{\circ}C$) or cool air ($20-40^{\circ}C$), and the effects of the drying temperature and processing time on the quality of the final dried mulberry fruits were investigated. Response surface methodology was employed to establish a statistical model and predict the conditions resulting in minimal loss of the total phenolic content (TPC) and ascorbic acid. Thus, using overlapped contour plots, the optimal conditions for producing semi-dried mulberry fruits, which reduced the moisture residue to 45% and minimized the nutrient losses of TPC and ascorbic acid, were determined for the hot-air process ($60.7^{\circ}C$ for 5.4 h) and cool-air process ($34.8^{\circ}C$ for 23.3 h). Plus, a higher drying temperature was found to lead to a faster loss of moisture and ascorbic acid, while the TPC was significantly decreased in the cool-air dried mulberry fruits due to the higher activity of polyphenol oxidase between 30 and $40^{\circ}C$.

Simulation of Natural Air Drying of Barley -Comparison of Experimental and Simulated Results- (보리의 상온 통풍건조 시뮬레이션(I) -실험치와 예측치의 비교-)

  • Keum, D.H.;Yi, S.D.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 1990
  • Four models in current use for cereal grain drying, equilibrium model, Morey model, partial differential equation model and simplified partial differential equation model, were modified to be suitable for natural air drying of barley. The predicted by the four models and experimental results were compared. Three models except equilibrium model predicted moisture comtent and grain temperature very well. But equilibrium model overpredicted moisture content and grain temperature of bottom layer. The degree of prediction of the four models for relative humidities of exhaust air didn't differ much from one another and equally the four models predicted relative humidity statisfatorily. Morey model took much shorter computing time than any other models. Therefore, considering the degree of prediction and computing time Morey model was the most suitable for natural air drying of barley.

  • PDF

A Study on the Insulating Properties of Pressboard for High Voltage Transformer Applied the Mold of Eddy Current Loss (와전류 손실을 적용한 금형으로 제조된 초고압 변압기의 프레스보드의 절연 특성 연구)

  • Suh, Wang-Byuck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.508-512
    • /
    • 2015
  • Some insulating materials are tested and analyzed with variables to obtain the reliable pressboard which is located to core and coil of high voltage transformer. The high voltage transformer is used in electrical power system and operating reliability. Optimization possibility of pressboard shape including electrical insulation performance could be achieved by analysis simulation. Using insulating pressboard, which is made by mold applied eddy current loss, it could be measured the influences of moisture content for electrical properties. As a result, it is to contribute to improve the performance and ensure the reliability of the pressboard by investigating electrical strength according to the variation oil temperature. In addition pressboard thickness is important design factor to ensure electrical strength in high voltage transformer.

Effect of Free-range Rearing on Meat Composition, Physical Properties and Sensory Evaluation in Taiwan Game Hens

  • Lin, Cheng-Yung;Kuo, Hsiao-Yun;Wan, Tien-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.880-885
    • /
    • 2014
  • Experiments were conducted to evaluate the effect of an outdoor-grazed raising model on meat composition, physical properties and sensory attributes of Taiwan game hens. Six hundred 1-d old female chicks were raised on a floor for 8 weeks. On day 57, 600 healthy birds, with similar body weight, were selected and randomly assigned to three treatment groups (cage, floor-pen and free-range). The results showed that different feeding models had no effect on drip loss, cooking loss, moisture, crude protein, crude fat, crude ash, zinc and calorie contents in breast meat and moisture content in thigh meat. The free-range group had the lowest fat content in both breast and thigh meat, and the lowest calorie content in thigh meat. The firmness and toughness in both thigh and breast of the free-range group were the highest values (p<0.05). The crude protein, total collagen, zinc and iron contents in thigh meat and total collagen content in breast meat of the free-range group were significantly higher than those of the cage-feeding group (p<0.05). The meat sensory scores of flavor, chewiness and overall acceptability of both thigh and breast meat of the free-range group were significantly (p<0.05) better than those of the other two groups. Moreover, the current findings also indicate that the Taiwan game hens of the free-range feeding model displayed well-received carcass traits and meat quality, with higher scores for flavor, chewiness and overall acceptability for greater sensory satisfaction in both breast and thigh meat. In addition, the thigh meat contained high protein and total collage but low fat, offering a healthier diet choice.

Characterization of Nutritional Value for Twenty-one Pork Muscles

  • Kim, J.H.;Seong, P.N.;Cho, S.H.;Park, B.Y.;Hah, K.H.;Yu, L. H.;Lim, D.G.;Hwang, I.H.;Kim, D.H.;Lee, J.M.;Ahn, C.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.138-143
    • /
    • 2008
  • A study was conducted to evaluate nutritional value for twenty-one pork muscles. Ten market-weight crossbred pigs (five gilts and five barrows) were used for evaluating proximate chemical composition, cholesterol, total iron, calorie and fatty acid contents. As preliminary analysis revealed no noticeable sex effect, pooled data from both sexes were used for the final analysis. M. rectus femoris had the highest moisture content, while m. latissimus dorsi was lowest in moisture content (p<0.05). Protein content was highest for m. longissimus dorsi and lowest for m. supraspinatus (p<0.05). The tensor fasciae and latissimus dorsi muscles contained the highest intramuscular fat (p<0.05), while rectus femoris, adductor and vastus lateralis were lowest in intramuscular fat content. When simple correlations between chemical values were computed for the pooled dataset from all muscles, intramuscular fat had significant (p<0.05) negative linear relationships with moisture (r = -0.85) and protein (r = -0.51) contents. Calorie levels were not significantly affected by fat content, while rectus femoris and latissimus dorsi muscles showed lowest and highest calorie contents, respectively (p<0.05). Polyunsaturated fatty acid content was highest (p<0.05) for both m. adductor and m. rectus femoris, while it was lowest for m. longissimus dorsi. Collectively, the current study identified a large amount of variation in nutritional characteristics between pork muscles, and the data can be used for the development of muscle-specific strategies to improve eating quality of meats and meat products.

Influence of Chloride Content of on Electrical Resistivity in Concrete (콘크리트내 염소이온량이 전기저항에 미치는 영향)

  • Yoon, In-Seok;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.90-96
    • /
    • 2014
  • The electrical resistivity of concrete can be related to two processes involved in corrosion of reinforcement: initiation (chloride penetration) and propagation (corrosion rate). The resisistivity of concrete structure exposed to chloride indicates the risk of early corrosion damage, because a low resistivity is related to rapid chloride penetration and to high corrosion rate. Concrete resistivity is a geometry-independent material property that describes the electrical resistance, which is the ratio between applied voltage and resulting current in a unit cell. In previous study, it was realized that the resistivity of concrete depended on the moisture content in the concrete, microstructural properties, and environmental attack such as carbonation. The current is carried by ions dissolved in the pore liquid. While some data exist on the relationship between moisture content on electrical resistivity of concrete, very little research has been conducted to evaluate the effect of chloride on the conduction of electricity through concrete. The purpose of this study is to examine and quantify the effect of chloride content on surface electrical resistivity measurement of concrete. It was obvious that chloride content had influenced the resistivity of concrete and the relationship showed a linear function. That is, concrete with chloride ions had a comparatively lower resistivity. Decreasing rate of resistivity of concrete was clear at early time, however, after 50 days resistivity was constant irrespective of chloride concentration. Conclusively, this paper suggested the quantitive solution to depict the electrical resistivity of concrete with chloride content.

Differential Seawater Adaptability in Three Different Sizes of Under-yearling Steelhead Trout

  • Lee, Myeongseok;Lee, Jang-Won
    • Development and Reproduction
    • /
    • v.24 no.3
    • /
    • pp.215-224
    • /
    • 2020
  • Seawater adaptability of steelhead trout increases along with the increase in the size of the fish, independent of parr-smolt transformation. Three 96 h seawater challenge tests were conducted to determine the size at which seawater adaptability of steelhead trout develops. Plasma Na+ and Cl- levels, moisture content, gill Na+/K+ ATPase activity, and mortality during the 96 h after direct transfer to seawater (32 ppt) were determined. Plasma Na+ and Cl- levels in 50 g fish continuously increased during the 96 h after the transfer to seawater (p<0.05), but the levels in 100 and 150 g fish leveled off after 24 h (p<0.05). Both 100 and 150 g size steelhead trout maintained muscle moisture content (%) better than 50 g size fish (p<0.05). Gill Na+/K+ ATPase activity in the 100 g size group increased in a time-dependent manner after transfer to seawater (p<0.05), whereas activity in the 50 and 150 g sizes did not increase (p>0.05), for which a possible explanation was discussed. A mere 2.6% mortality in both the 50 and 150 g size groups was observed. In conclusion, the current results indicate that 50 g size steelhead trout did not show development of a high level of hypoosmoregulatory capacity, whereas fish in the 100 and 150 g size groups showed a high level in our experimental conditions. Therefore, the steelhead trout larger than a 100 g size is recommended for transfer to seawater culture.

Process Modeling and Optimization Studies in Drying of Current Transformers

  • Bhattacharya, Subhendu;D'Melo, Dawid;Chaudhari, Lokesh;Sharma, Ram Avatar;Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.273-277
    • /
    • 2012
  • The vacuum drying process for drying of paper in current transformers was modeled with an aim to develop an understanding of the drying mechanism involved and also to predict the water collection rates. A molecular as well as macroscopic approach was adopted for the prediction of drying rate. Ficks law of diffusion was adopted for the prediction of drying rates at macroscopic levels. A steady state and dynamic mass transfer simulation was performed. The bulk diffusion coefficient was calculated using weight loss experiments. The accuracy of the solution was a strong function of the relation developed to determine the equilibrium moisture content. The actually observed diffusion constant was also important to predict the plant water removal rate. Thermo gravimetric studies helped in calculating the diffusion constant. In addition, simulation studies revealed the formation of perpetual moisture traps (loops) inside the CT. These loops can only be broken by changing the temperature or pressure of the system. The change in temperature or pressure changes the kinetic or potential energy of the effusing vapor resulting in breaking of the loop. The cycle was developed based on this mechanism. Additionally, simulation studies also revealed that the actual mechanism of moisture diffusion in CT's is by surface jumps initiated by surface diffusion balanced against the surrounding pressure. Every subsequent step in the cycle was to break such loops. The effect of change in drying time on the electrical properties of the insulation was also assessed. The measurement of capacitance at the rated voltage and one third of the rated voltage demonstrated that the capacitance change is within the acceptance limit. Hence, the new cycle does not affect the electrical performance of the CT.

Effect of Organic Matter and Moisture Content on Reduction of Cr(VI) in Soils by Zerovalent Iron (영가철에 의한 토양 Cr(VI) 환원에 미치는 유기물 및 수분함량 영향)

  • Yang, Jae-E.;Lee, Su-Jae;Kim, Dong-Kuk;Oh, Sang-Eun;Yoon, Sung-Hwan;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • Current soil remediation principles for toxic metals have some limitations even though they vary with different technologies. An alternative technology that transforms hazardous substances into nonhazardous ones would be environmentally beneficial. Objective of this research was to assess optimum conditions for Cr(VI) reduction in soils as influenced by ZVI(Zero-Valent Iron), organic matter and moisture content. The reduction ratio of Cr(VI) was increased from 37 to 40% as organic matter content increased from 1.07 to 1.75%. In addition, Cr(VI) concentration was reduced as soil moisture content increased, but the direct effect of soil moisture content on Cr(VI) reduction was less than 5% of the Cr(VI) reduction ratio. However, combined treatment of ZVI(5%), organic matter(1.75%) and soil moisture(30%) effectively reduced the initial Cr(VI) to over 95% within 5 days and nearly 100% after 30 days by increasing oxidation of ZVI and concurrent reduction of Cr(VI) to Cr(III). The overall results demonstrated that ZVI was effective in remediating Cr(VI) contaminated soils, and the efficiency was synergistic with the combined treatments of soil moisture and organic matter.