• Title/Summary/Keyword: current meter mooring

Search Result 5, Processing Time 0.032 seconds

Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea

  • Park, Jae-Hun;Lie, Heung-Jae;Guo, Binghuo
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.409-419
    • /
    • 2011
  • Semi-diurnal internal tides and near-inertial waves are investigated using moored current meter measurements at four sites along the shelf break of the East China Sea during August 1987 and May-June 1988. Each mooring is equipped with four current meters spanning from near surface to near bottom. Spectral analyses of all current data reveal dominant spectra at the semi-diurnal frequency band, where the upper and lower current measurements show out-of-phase relationship between them with significant coherences. These are consistent with typical characteristics of the first-mode semi-diurnal internal tide. Strong intensification of the near-bottom baroclinic currents is observed only at one site, where the ratio of the bottom slope to the slope of the internal-wave characteristics at the semi-diurnal frequency is close to unity. An energetic near-inertial wave event is observed during the first half of May-June 1988 observation at two mooring sites. Rotary spectra reveal that the most dominant signal is clockwise rotating motion at the near-inertial frequency band. Upward phase and downward energy propagations, shown in time-depth contour plots of near-inertial bandpass filtered currents, are confirmed by cross correlations between the upper- and lower-layer current measurements. The upward-propagating phase speed is estimated to be about 0.13 cm $s^{-1}$ at both sites. Significant coherences and in-phase relationships of near-inertial currents at the same or similar depths between the two sites are observed in spite of their long distance of about 110 km.

Tides and Currents of Kamag Bay in July-August 1994 (1994년 7-8월 가막만의 조석 및 해류)

  • LEE Jae Chul;CHOO Hyo Sang;LEE Kyu Hyong;CHO Kyu Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.624-634
    • /
    • 1995
  • Tides at both of northern and southern entrances of Kamag Bay were compared by deploying tide gauges for 18 days during July-August 1994. To examine the response of the inner bay to the tidal waves through both entrances, a current meter was moored at the eastern pan of the inner bay. Current meter mooring failed at the northern entrance (Yosu) while the current data was collected for only 5 days at the southern site (Songdo). Maximum range was 357 and 352 cm at Yosu and Songdo, respectively. Respective amplitudes for M2, S2 Kl O1 tides of 95.5, 48.8, 20.5, 14.0cm at Yosu and 93.6, 47.2, 21.3, 13.1cm at Songdo yielded the form numbers of 0.23 and 0.24, respectively, both of which belong to the predominantly semidiurnal tide, Contributions from the overtides and compound tides were less than $4\%^ at both sites. Differences in Greenwich phase of major partial tides between two sites were negligible. Maximum speed of tidal current was about 100cm/sec at the southern entrance and about 40cm/sec at the inner bay. Residual current speed was 17cm/sec southwestward at the southern entrance and 0.9cm/sec southeastward at the inner bay. Temporal change in current at the inner bay showed that the wind had a significant influence upon the circulation in Kamag Bay.

  • PDF

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Changes of Surface $M_2$ Currents as Observed by HF Radar Before and After Saemangeum Fourth Tidal Dyke Closing (새만금 4호 방조제 완성 전.후 HF 레이다로 관측된 표층 $M_2$ 조류의 변화)

  • Kim Chang-Soo;Lee Sang-Ho;Son Young-Tae;Kwon Hyo-Keun;Lee Kwang-Hee;Kim Young-Bae;Jeong Ou-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.37-48
    • /
    • 2006
  • HF radar-derived current data obtained in 2002 and 2004 are analyzed to examine the effects of the completion of the Saemangeum 4th tidal dyke in June 2003, connecting Gogunsan-Gundo and Bieung-Do, on the coastal surface $M_2$ current pattern. Comparison between the currents by HF radar and current meter mooring showed good agreements. Counterclockwise rotation of the $M_2$ current in the observed area did not change with the dyke construction. Strong westward ebb jet from the gap of the dyke was observed in 2002 but disappeared in 2004. The complete closing of the dyke gap caused the current speed increase around the mouth of the Kem River estuary, decrease around Gogunsan-Gundo and the dyke, the changes in the direction of maximum current to north-ward from eastward and the delay of the maximum flood current occurrence around Gogunsan-Gundo and the dyke. Around Yeon-Do, the maximum flood current directed more clockwise and occurred rather earlier. These changes of the $M_2$ current ellipse characteristics imply that the effects of the dyke construction reached the area connecting Mal-Do and Yeun-Do.

A Study on the Residual Current in the Cheju Strait (제주해협의 해수유동특성에 관한 연구)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.759-770
    • /
    • 1997
  • The general flow patterns in the Cheju Strait have been investicated by analyzing the current observations measured in $1986\~1989$ by current meter mooring in 3 north-south sections in the Cheju Strait and at 4 observation points around Cheju Harbour, and measured in $1981\~1987$ by drogue tracking. 1. In the Cheju Strait, there are eastward or northeastward residual currents, which implies that sea waters flow into through the whole western section and flow out through the whole eastern section in the Cheju Strait. The velocity of residual currents are $5.2\~30\;cm/sec$ in 10 m layer and $1.3\~24cm/sec$ in mid-bottom layer. Generally, the flow is strong along the deepest through and the northern part, and weak in the shallow areas near Chuja Islands and Bogil Island. 2. In the western entrance of the Cheju Strait, the observed mean residual velocity is 6.93 cm/sec and the volume transport is 0.384 Sv. There are a big discrepancy between the observed residual currents and the geostrophic currents. 3. Near the frontal areas northwest to Chuja Islands, warm and saline offshore waters, flow northward about 5 miles into the southern coastal areas of the Korean Peninsula in flood, and flow back rather eastward or southeastward than southward in ebb. So, warm and saline waters flow along coastal areas, being mixed with coastal waters. As a result, the northwestern area of Chuja Islands plays a role of the entrance of influx of warm and saline offshore water to the southwestern coastal areas of the Korean Peninsula. It should be stressed that this flow pattern is not due to the residual flows, but to the temporal (tidal) flows.

  • PDF