• Title/Summary/Keyword: current limiting elements

Search Result 85, Processing Time 0.025 seconds

The study on the Electrical Property of the Fuse Element Notch (휴즈엘리먼트의 노치형태에 따른 전기적 특성 연구)

  • Lee, Sei-Hyun;Lee, Byung-Sung;Han, Sang-Ok;Kim, Jong-Suk;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1153-1155
    • /
    • 1993
  • This paper presents some experimental result of current limiting, fusing and short circuit interruption behavior by notch construction of thin copper film $35{\mu}m$ on epoxy substrate. A fuse-link having elements of copper film provided high-precision small holes by photo eatching process.

  • PDF

Design and Characterization of a Reactor for Matrix Type SFCLs Using Electromagnetic Field Analysis (전자장 해석을 통한 매트릭스형 한류기용 리액터 설계 및 특성해석)

  • Chung, Dong-Chul;Yun, Chang-Hun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.227-230
    • /
    • 2009
  • In this paper, we performed the optimum design of reactors for matrix-type superconducting-fault current limiters (SFCLs), using electromagnetic analysis tools. We decided a optimun position within a reactor for superconducting elements of current-limiting parts and trigger parts from the calculation of magnetic flux internsity for reactor structures. Also we decided effective distance length between two reactors through the analysis of the distribution of magnetic field, according to distance lengths between them. We designed and characterized matrix-type SFCLs, based on our optimum design of a reactor. We confirmed uniform distribution of a fault current, resulted from the improvement of simultaneous quench characteristics within our matrix-type SFCL.

Quench Characteristics of HTSC Elements according to fault types in Integrated Three-Phase (삼상일체화된 자속구속형 SFCL의 사고종류에 따른 소자들의 퀜치 특성)

  • Park, Chung-Ryul;Lee, Jong-Hwa;Park, Sig;Du, Ho-Ik;Lim, Sung-Hun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.960-962
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of high-Tc superconducting(HTSC) elements in the integrated three-phase flux-lock type superconducting fault current limiter(SFCL) according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the triple-line-to-ground fault. The integrated three-phase flux-lock type SFCL is an upgrade version of single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of a three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single one of three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases to quench irrespective of the fault type, which reduces the current in fault phase as well as the current of sound phase. It was obtained that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Characteristics of a FCL Applying Fast Interrupter According to the Current Limitation Elements (고속 인터럽터를 적용한 한류기의 전류제한요소에 따른 특성)

  • Im, In-Gyu;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1752-1757
    • /
    • 2012
  • With the development in industry, power demand has increased rapidly. As consumption of power has increased, Demand for new power line and electric capacity has risen. However, in the event of fault, problems occur in extending the range of fault coverage and increasing fault current. In these reasons, protection devise is recognized as the prevention of an accident and fault current. This paper dealt with minimizing fault propagation and limiting fault current by adjusting fault current limiter (FCL) with fast interrupter. At this point, we compared and analyzed characteristics between non-inductive resistance and fault current which is limited by superconducting units. In normal state of the power system, power was supplied to the load, but when fault occurred, the interrupter was operated as CT which detected the over-current. Its operation made the limitation of fault current through a FCL. We concluded that the limiter using superconducting units was more efficient with the increase of power voltage. Superconducting fault current limiter with the fast interrupter prevented the spread of a fault, and improved reliability of power system.

Operating properties of superconducting fault current limiters with a sing1e line-to-ground fault in a three-phase system (3상 전력계통의 1선 지락사고에 대한 초전도한류기의 동작특성)

  • 최효상;현옥배;김혜림;황시돌;차상도
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.261-262
    • /
    • 2003
  • We performed unsymmetrical analysis of a single line-to-ground fault in a three-phase system. The current limiting elements were meander type YBCO stripes coated with Au shunt. When the fault occurred, short circuit currents were effectively limited within 1-2 msec after fault instant. The unsymmetrical rate of fault phase was distributed from 6.4 to 1.4 and most of the fault current flowed in the grounding line due to its direct grounding system.

  • PDF

A Study on the fuse elements for the protection of a semiconductor using a ceramic substrate (세라믹 기판을 이용한 반도체 보호용 휴즈 엘리먼트에 관한 연구)

  • Lee, S.H.;Han, S.O.;Kim, J.S.;Lee, S.H.;Sung, K.S.;Kwon, Y.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.762-764
    • /
    • 1992
  • This Paper presents some experimental result of current limiting and short circuit interruption behavior of thin copper film, 12${\mu}m$, 25${\mu}m$, 40${\mu}m$, 50${\mu}m$ on alumina substrate. and a fuse-link having elements of copper film provided with high-precision small hols with electrolytical process. Construction, fabrication, as well as the test circuitry built especially for the develoment of this fuse-links are explained below.

  • PDF

The characteristic of leakage current in ZnO surge arrestor elements with mixed direct and 60Hz voltage (중첩전압(직류+교류 60Hz)에서 산화아연 피뢰기 소자의 누설전류 특성)

  • Lee, B.H.;Pak, K.Y.;Kang, S.M.;Choi, H.S.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.186-188
    • /
    • 2003
  • The ZnO surge arrester is the protective device for limiting surge voltages on equipment by diverting surge current and returning the device to its original status. The occurrence of overvoltage appears in any phase to AC power supply system and it appears in mixing AC and impulse voltages, moreover because HVDC power supply system uses converter in semiconductor, it makes mixed DC and high harmonics voltages. In this study, the various mixed AC and DC voltages was made for investigating the degradation effect of ZnO arrester according to mixed voltage. As a result, the increase of DC component to mixed voltages causes the increase of resistive component of total leakage current to ZnO block. In changing V-I curve for mixed voltages, the cross-over point acts a factor as making the proper capacitor size of an equivalent circuit for ZnO block.

  • PDF

A Study on the Adjusting Output Energy of the $CO_2$ Laser Controlled Directly in AC Power Line

  • Noh, Ki-Kyong;Jeong, Jong-Jin;Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.152-154
    • /
    • 2005
  • We demonstrate a simple $CO_2$ laser by controlling firing angle of a TRIAC switch in ac power line. The power supply for our laser system switches the voltage of the AC power line (60Hz) directly. The power supply does not need elements such as a rectifier bridge, energy-storage capacitors, or a current-limiting resistor in the discharge circuit. In order to control the laser output power, the pulse repetition rate is adjusted up to 60Hz and the firing angle of TRIAC gate is varied from $45^{circ}$ to $135^{circ}$. A ZCS(Zero Crossing Switch) circuit and a PIC one-chip microprocessor are used to control the gate signal of the TRIAC precisely. The maximum laser output of 40W is obtained at a total pressure of 18 Torr, a pulse repetition rate of 60Hz, and a TRAIC gate firing angle of $90^{circ}$.

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.

Preliminary study on the quench protection of Bi-22231 Ag tape using superconducting fault current limiter (초전도 한류기를 이용한 Bi-2223/Ag 선재의 퀜치 보호를 위한 기초 연구)

  • Du, Ho-Ik;Yim, Seong-Woo;Hyun, Ok-Bae;Hwang, Si-Dole;Cho, Chul-Yong;Park, Chung-Ryul;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.243-244
    • /
    • 2006
  • As an preliminary study for the quench protection of high temperature superconducting (HTS) cable using superconducting fault current limiter (SFCL), experimental research was carried out. The test circuit was composed of Bi-2223/Ag HTS tape and a SFCL made of YBCO thin films. In the normal state, the applied current of 56 A, which was critical current of HTS tape, could be flown through the circuit without resistive loss. Increasing the currents, the quench development of both materials was investigated from the voltage signal acquired from the resistance of the quenched superconductor. Up to around 10 times of the critical current was applied to the HTS tape and the current limiting characteristics of SFCL were investigated. In addition, for the finding out the optimal operating condition of SFCL such as the numbers of elements, a shunt resistor was applied to the SFCL and quench characteristics were analyzed as well.

  • PDF