• Title/Summary/Keyword: current detecting

Search Result 756, Processing Time 0.027 seconds

Hydrogen Detecting Characteristics of the $WO_3$ Films Using the R/V Converting Circuit (저항-전압변환회로를 이용한 $WO_3$ 박막의 수소검지 특성 측정)

  • Rhie, Dong-Hee;Koh, Jung-Hyuk;Kim, Young-Hwan;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.767-769
    • /
    • 1998
  • Using the R/V converting circuit, hydrogen detecting characteristics of the $WO_3$ films were investigated. The R/V converting circuit is configured with the equivalently constant current driving method connecting an unknown resistor to be measured in the feedback loop of the or-amr rather than using a separated constant current circuit. The response time of the reference voltage for the R/V converting circuit was simulated by the circuit simulator "SABER", and it was found that the response time in the high resistance range become longer and the error amounts to 10%. From the simulation results. replacing the capacitor in the feedback loop of the second stage or-amp with a 0.001uF capacitor, when measuring in the high resistance range, the response characteristics are remarkably improved. The response time was shortened from about 10 seconds to below 1 second. Using this circuit, the effect of $WO_3$ films deposited by sputtering method on hydrogen was measured.

  • PDF

Multi-Object Tracking Based on Keypoints Using Homography in Mobile Environments (모바일 환경 Homography를 이용한 특징점 기반 다중 객체 추적)

  • Han, Woo ri;Kim, Young-Seop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.67-72
    • /
    • 2015
  • This paper proposes an object tracking system based on keypoints using homography in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information. Tracking module tracks an object using homography information that generate by being matched on the learned object keypoints to the current object keypoints. Then update the window included the object for defining object's pose. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track objects with updating object's pose for the use of mobile platform.

Electrochemical measurement for analysis of DNA sequence (DNA 염기서열 분석을 위한 전기 화학적 측정법)

  • Jo, Seong-Bo;Hong, Jin-Seop;Kim, Yeong-Mi;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.92-97
    • /
    • 2002
  • One of the important roles of a DNA chip is the capability of detecting genetic diseases and mutations by analyzing DNA sequence. For a successful electrochemical genotyping, several aspects should be considered including the chemical treatment of electrode surface, DNA immobilization on electrode, hybridization, choice of an intercalator to be selectively bound to double standee DNA, and an equipment for detecting and analyzing the output signal. Au was used as the electrode material, 2-mercaptoethanol was used for linking DNA to Au electrode, and methylene blue was used as an indicator that can be bound to a double stranded DNA selectively. From the analysis of reductive current of this indicator that was bound to a double stranded DNA on an electrode, a normal double stranded DNA was able to be distinguished from a single stranded DNA in just a few seconds. Also, it was found that the peak reduction current of indicator is proportional to the concentration of target DNA to be hybridized with probe DNA. Therefore, it is possible to realize a sim71e and cheats DNA sensor using the electrochemical measurement for genotyping.

Fault detection and classification of permanent magnet synchronous machine using signal injection

  • Kim, Inhwan;Lee, Younghun;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.785-790
    • /
    • 2022
  • Condition monitoring of permanent magnet synchronous motors (PMSMs) and detecting faults such as eccentricity and demagnetization are essential for ensuring system reliability. Motor current signal analysis is the most commonly used precursor for detecting faults in the PMSM drive system. However, the current signature responds sensitively to the load and temperature of the motor, thereby making it difficult to monitor faults in real- applications. Therefore, in this study, a condition monitoring methodology that detects motor faults, including their classification with standstill conditions, is proposed. The objective is to detect and classify faults of PMSMs by using programmable inverter without additional sensors and systems for detection. Both DC and AC were applied through the d-axis of a three-phase motor, and the change in incremental inductance was investigated to detect and classify faults. Simulation with finite element analysis and experiments were performed on PMSMs in healthy conditions as well as with eccentricity and demagnetization faults. Based on the results obtained from experiments, the proposed method was confirmed to detect and classify types of faults, including their severity.

Current Landscape and Future Perspectives of Abbreviated MRI for Hepatocellular Carcinoma Surveillance

  • Hyo Jung, Park;Nieun Seo;So Yeon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.598-614
    • /
    • 2022
  • While ultrasound (US) is considered an important tool for hepatocellular carcinoma (HCC) surveillance, it has limited sensitivity for detecting early-stage HCC. Abbreviated MRI (AMRI) has recently gained popularity owing to better sensitivity in its detection of early-stage HCC than US, while also minimizing the time and cost in comparison to complete contrast-enhanced MRI, as AMRI includes only a few essential sequences tailored for detecting HCC. Currently, three AMRI protocols exist, namely gadoxetic acid-enhanced hepatobiliary-phase AMRI, dynamic contrast-enhanced AMRI, and non-enhanced AMRI. In this study, we discussed the rationale and technical details of AMRI techniques for achieving optimal surveillance performance. The strengths, weaknesses, and current issues of each AMRI protocol were also elucidated. Moreover, we scrutinized previously performed AMRI studies regarding clinical and technical factors. Reporting and recall strategies were discussed while considering the differences in AMRI protocols. A risk-stratified approach for the target population should be taken to maximize the benefits of AMRI and the cost-effectiveness should be considered. In the era of multiple HCC surveillance tools, patients need to be fully informed about their choices for better adherence to a surveillance program.

Development of a Deterioration Diagnostic Device for ZnO Arrester by Leakage Current Detection (누설전류 검출에 의한 ZnO 피뢰기의 열화진단장치 개발)

  • Kim, Jae-Chul;Lee, Bo-Ho;Oh, Jung-Hwan;Lee, Young-Gil;Moon, Sun-Ho;Kim, Young-Chun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.184-189
    • /
    • 1999
  • In this paper, we develope a diagnosis device for ZnO arrester by detecting the leakage current in service. To diagnose the deterioration of ZnO arrester, the device detects the total leakage current which flows between an arrester and ground, and analyzes the resistive current(third harmonic current) which is an indicator of deterioration of ZnO arrester. We use the optical cable which can transfer a detected data without a noise, also use a microprocessor for a data storage, processing, and trend analysis. Experiment are executed to verify its performance in laboratory and the results show that the diagnosis device exactly detects the total leakage current and the resistive current, so it can diagnose the deterioration of ZnO arrester. Also the leakage current of ZnO arrester is detected using the developed diagnostic device in field, these results are presented.

  • PDF

A Microfluidic Electrochemical Sensor for Detecting the Very Low Concentration Endocrine Disruptor with Self Assembled Monolayer and Preconcentration Technique (자기조립단층과 농축 기술을 이용한 저농도 내분비계 장애물질 검출용 미소유체채널 기반 전기화학 센서)

  • Kim, Suyun;Han, Ji-Hoon;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.628-634
    • /
    • 2016
  • This paper demonstrates a microfluidic electrochemical sensor for detecting endocrine disruptor such as estradiol at a very low concentration by using preconcentration technique. In addition, self-assembled monolayer(SAM) was also employed on the working electrode of the electrochemical sensor in order to increase the estradiol capture efficiency of the sensor. SAM treatment on the working electrode enhanced the specific binding between the surface of the working electrode and the estradiol antibody. The estradiol antibody was applied on the working electrode at different concentrations(10, 20, 50, 100, 200 pg/ml) for observing the concentration dependency. The measured electrochemical redox current changed with the amount of the bound estradiol on the Au working electrode surface and the sensor can detect all the target material when the immobilized antibody amount is more than the estradiol amount in the water. The elecrochemical estradiol sensor without SAM treatment showed a low current of 7.79 nA, while the sensor treated with SAM resulted in 339 nA at 200 pg/ml, which is more than 40 fold higher output current. When combining the preconcentration technique and the SAM-treated electrode, the measured current became more than 100 fold higher than that of the sensor without neither SAM treatment nor preconcentration technique. The combination of these two techniques can would enable the proposed microfluidic electrochemical sensor to detect a very low concentration endocrine disruptor.

The Improvement of Infrared Brightness Temperature Difference Method for Detecting Yellow Sand Dust

  • Ha, Jong-Sung;Kim, Jae-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.149-152
    • /
    • 2007
  • The detection of yellow sand dust using satellite has been utilized from various bands from ultraviolet to infrared channels. Among them, Infrared channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. Especially, brightness temperature difference between 11 and 12{\mu}m(BTD) was often used to distinguish between water cloud and yellow sand, because Ice and liquid water particles preferentially absorb longer wavelengths while aerosol particles preferentially absorb shorter wavelengths. We have found that the BTD significantly depends on surface temperature, emissivity, and zenith angle and thereby the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then subtracted it from BTD. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT-1R, to verify the reliability of the retrieved signal in conjunction with forecasted wind information. The statistical score test illustrated that this newly developed algorithm showed a promising result for detecting mineral dust by reducing the errors in the current BTD method.

  • PDF

Current status of image-enhanced endoscopy in inflammatory bowel disease

  • Young Joo Yang
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.563-577
    • /
    • 2023
  • In inflammatory bowel disease (IBD), chronic inflammation leads to unfavorable clinical outcomes and increases the risk of developing colorectal neoplasm (CRN); thereby highlighting the importance of endoscopically evaluating disease activity as well as detecting and characterizing CRN in patients with IBD. With recent advances in image-enhanced endoscopic (IEE) technologies, especially virtual chromoendoscopy (VCE) platforms, this review discusses state-of-the-art IEE techniques and their applicability in assessing disease activity and surveillance colonoscopy in patients with IBD. Among various IEE, VCE demonstrated the capacity to identify quiescent disease activity. And endoscopic remission defined by the new scoring system using VCE platform better predicted clinical outcomes, which may benefit the tailoring of therapeutic strategies in patients with IBD. High-definition dye-chromoendoscopy (HD-DCE) is numerically superior to high-definition white light endoscopy (HD-WLE) in detecting CRN in IBD; however, discrepancy is observed in the statistical significance. VCE showed comparable performance in detecting dysplasia to HD-WLE or DCE and potential for optical diagnosis to differentiate neoplastic from nonneoplastic lesions during surveillance colonoscopy. Applying these novel advanced IEE technologies would provide opportunities for personalized medicine in IBD and optimal treatment of CRN in patients with IBD.

Ground fault protective relaying schemes for DC traction power supply system (비접지 DC 급전계통에서 전류형 지락보호계전 방법)

  • 정상기;정락교;이성혁;김연수;조홍식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.