• Title/Summary/Keyword: curing temperature and times

Search Result 102, Processing Time 0.019 seconds

Properties and Suitability of Bark Extractives from Larix leptolepsis as a Bonding Agent (낙엽송(落葉松) 수피추출물(樹皮抽出物)의 특성(特性)과 접착제화(接着劑化)의 적합성(適合性))

  • Oh, Jung Do;Ahn, Won Yung
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.294-302
    • /
    • 1988
  • The experiment was carried out to investigate the properties of bark extractives form Larix epilepsies and to evacuate their suitability as a bonding agent. The yield and reactivity were measured to examine the influence of temperature and time and the effect of carbonation and sulfonation. To define the possibility of practical application as wood adhesives the viscosity and gelation time were measured at 33% concentration. The results obtained were summarized as follows : 1. As the both yield and reactivity were high, extraction for 2 hours at $80^{\circ}C$ was the optimal temperature and time. 2. The highest effect achieved at 1% $Na_2CO_3$ about carbonation and 1% $Na_2SO_3$ : $NaHSO_3$ and 0.25% $Na_2SO_3$ about sulfonation. The sulfonation of 0.25% $Na_2SO_3$ increased the yield and reactivity most highly. 3. By using hot water as extraction liquid the yield was 17.2%, while the addition of 1% and 5% NaOH to the extraction liquid increased the yield to 38.6% and 44.6%, respectively. 4. Hot water extracts showed the highest reactivity(68.8%). The addition of 1% and 5% NaOH led to decrease in reactivity(49.3% and 25.8%, respectively). 5. At 33% concentration of the extracts the viscosity appeared very variable. Significantly high values of viscosity was measured in 1% NaOH solution, while very low values appeared for 5% NaOH solution. 6. The shortest gelation time was determined at pH 7 to 10 and the highest at pH 4. The use of paraformaldehyde resulted in gelation times longer than those of 37% formaldehyde solution. 7. Except the sulfonation extracts of hot water and 1% NaOH, the other extracts were found unsuitable due to high viscosity(1% NaOH extracts, sulfonation extracts) or to curing inability(5% NaOH extracts, sulfonation extracts of 5% NaOH). 8. From the three extract solutions which appeared to be suitable for use as bonding agents the hot water extracts and the sulfonation extracts of hot water were superior in extract reactivity, while the sulfonation extracts of 1% NaOH exceeded the other two extracts in extract yield.

  • PDF

MICROLEAKAGE OF THE EXPERIMENTAL COMPOSITE RESIN WITH THREE COMPONENT PHOTOINITIATOR SYSTEMS (3종 광중합개시제를 함유한 실험용 복합레진의 미세누출도)

  • Kim, Ji-Hoon;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • This study was done to determine if there is any difference in microleakage between experimental composite resins, in which various proportions of three component photoinitiators (Camphoroquinone, OPPI, Amine) were included. Four kinds of experimental composite resin were made by mixing 3.2% silanated barium glass (78 wt.%, average size; 1 ${\mu}m$) with each monomer system including variously proportioned photoinitiator systems used for photoinitiating BisGMA/BisEMA/TEGDMA monomer blend (37.5:37.5:25 wt.%). The weight percentage of each component were as follows (in sequence Camphoroquinone, OPPI, Amine): Group A - 0.5%, 0%, 1% / Group B - 2%, 0.2%, 2% / Group C - 0.2%, 1%, 0.2% / Group D - 1%, 1%, 2%. Each composite resin was used as a filling material for round class V cavities (diameter: 2/3 of mesiodistal width; depth: 1.5 mm) made on extracted human premolars and they were polymerized using curing light unit (XL 2500, 3M ESPE) for 40 s with an intensity of 600 mW/$cm^2$. Teeth were thermocycled fivehundred times between $50^{\circ}C$and $550^{\circ}C$for 30s at each temperature. Electrical conductivity (${\mu}A$) was recorded two times (just after thermocycling and after three-month storage in saline solution) by electrochemical method. Microleakage scores of each group according to evaluation time were as follows [Group: at first record / at second record; unit (${\mu}A$)]: A: 3.80 (0.69) / 13.22 (4.48), B: 3.42 (1.33) / 18.84 (5.53), C: 4.18 (2.55) / 28.08 (7.75), D: 4.12 (1.86) / 7.41 (3.41). Just after thermocycling, there was no difference in microleakage between groups, however, group C showed the largest score after three-month storage. Although there seems to be no difference in microleakage between groups just after thermocycling, composite resin with highly concentrated initiation system or classical design (Camphoroquinone and Amine system) would be more desirable for minimizing microleakage after three-month storage.