• Title/Summary/Keyword: curing sheet

Search Result 112, Processing Time 0.017 seconds

An Experimental Study on Fundamental Properties of a Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인 시작품의 기초 물성평가)

  • Chang, Soo-Ho;Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.220-234
    • /
    • 2016
  • Sprayable waterproofing membrane has been considered as a substitute for a sheet waterproofing membrane in a variety of underground excavation works. However, fundamental properties of sprayble waterproofing membrane have not been fully given yet. In this study, a new two-component sprayable waterproofing membrane prototype was developed. In addition, its physico-mechanical properties were measured and compared with those of two kinds of thin spray-on liners where constitutive materials and construction methods are very close to each other. From direct tensile tests, the sprayable waterproofing membrane with elongations at break between 250% and 300% showed much higher ductility than TSLs. However, the sprayable waterproofing membrane had a limitation as a support member since its bond strength and loading capacity was lower than those of TSLs. From three-dimensional X-ray CT images, the porosity of the sprayable waterproofing membrane was estimated to be 26.13%. However, most of pores which might have been generated during membrane curing were not observed to be interconnected but isolated.

Manufacture and Qualification of Composite Main Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 주반사판 제작 및 검증)

  • Dong-Geon Kim;Hyun-Guk Kim;Dong-Yeon Kim;Kyung-Rae Koo;Ji-min An;O-young Choi
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.219-225
    • /
    • 2024
  • It is essential to develop a light-weight, high-performance structure for the deployable reflector antenna, which is the payload of a reconnaissance satellite, considering launch and orbital operation performance. Among them, the composite main reflector is a key component that constitutes a deployable reflector antenna. In particular, the development of a high-performance main reflector is required to acquire high-quality satellite images after agile attitude control maneuvers during satellite missions. To develop main reflector, the initial design of the main reflector was confirmed considering the structural performance according to the laminate stacking design and material properties of the composite main reflector that constitutes the deployable reflector antenna. Based on the initial design, four types of composite main reflectors were manufactured with the variable for manufacturing process. As variables for manufacturing process, the curing process of the composite structure, the application of adhesive film between the carbon fiber composite sheet and the honeycomb core, and the venting path inside the sandwich composite were selected. After manufacture main reflector, weight measurement, non-destructive testing(NDT), surface error measurement, and modal test were performed on the four types of main reflectors produced. By selecting a manufacturing process that does not apply adhesive film and includes venting path, for a composite main reflector with light weight and structural performance, we developed and verified a main reflector that can be applied to the SAR(Synthetic Aperture Rader) satellite.