• Title/Summary/Keyword: curing catalyst

Search Result 90, Processing Time 0.027 seconds

Study of Heat of Reaction Between Plasma Polymer Coated Silica Fillers and Biphenyl Epoxy Resin (플라즈마 코팅된 실리카와 에폭시 수지간의 반응성 연구)

  • Kim N. I.;Kang H. M.;Yoon T. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.96-99
    • /
    • 2004
  • Silica fillers were coated by plasma polymer coatings of 1,3-diaminopropane, allylamine, pyrrole, 1,2-epoxy-5-hexene, allyl mercaptan and allyl alcohol using RF plasma (13.56 MHz). The coated fillers were then mixed with biphenyl epoxy, phenol novolac (curing agent) and/or triphenylphosphine (catalyst), and subjected to DSC analyses in order to elucidate the chemical reaction between functional moieties in the plasma polymer coatings and the epoxy resin. Only the samples with 1,3-diaminopropane and allylamine plasma polymer coated silica fillers showed heat of reaction peaks when they were mixed with biphenyl epoxy resin only, while these samples as well as the samples with 1,3-diaminopropane, allylamine and pyrrole plasma polymer coated silica fillers exhibited heat of reaction peaks when mixed with both biphenyl epoxy and phenol novolac (curing agent).

  • PDF

The Wrinkle Resistance and DP Rating of Tencel Treated with BTCA (BTCA를 이용한 텐셀의 방추성 및 DP성)

  • 양인영;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1265-1272
    • /
    • 2004
  • The purpose of this study is to develope wrinkle recovery property, DP rating of Tencel by using BTCA(1,2,3,4-butanetetracarboxylic acid) and MgCl$_2$ that does not make water pollution. The adoptable condition to improve the wrinkle resistance and DP rating was determined 10% BTCA(o.w.f), 3% catalyst(o.w.f), 0.5% softener(o.w.f), 5min padding time, 150$^{\circ}C$ curing temperature, 2min curing time and pH 2.7. It was proven that ester groups were formed and cross-links increased by treating Tencel with BTCA. By XPS diffraction, Tencel treatment using BTCA was proved not to affect crystal formation.

A Kinetic Study of Biphenyl Type Epoxy-Xylok Resin System with Different Kinds of Catalysts

  • 한승;김환근;윤호규;문탁진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1199-1203
    • /
    • 1997
  • The investigation of cure kinetics of biphenyl epoxy (4,4-diglycidyloxy-3,3,5,5-tetramethyl biphenyl)-xylok resin system with four different catalysts was performed by differential scanning calorimeter using an isothermal approach. All kinetic parameters of the curing reaction including the reaction order, activation energy and rate constant were calculated and reported. The results indicate that the curing reaction of the formulations using triphenylphosphine (TPP) and 1-benzyl-2-methylimidazole (1B2MI) as a catalyst proceeds through a first order kinetic mechanism, whereas that of the formulations using diazabicyloundecene (DBU) and tetraphenyl phosphonium tetraphenyl borate (TPP-TPB) proceeds by an autocatalytic kinetic mechanism. To describe the cure reaction in the latter stage, we have used the semiempirical relationship proposed by Chern and Poehlein. By combining an nth order kinetic model or an autocatalytic model with a diffusion factor, it is possible to predict the cure kinetics of each catalytic system over the whole range of conversion.

The Effects of Glycerol Aftertreatment for Low-Formaldehyde Finishing (Glycerol 후처리에 의한 Free-formaldehyde 발생 억제 효과)

  • Choi Suk-Chul;Kim Ho-Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 1986
  • To control the amounts of formaldehyde released from the cotton fabric finished with N-methylol compounds, glycerol was used as a formaldehyde-scavenging agent. It was observed the effects of catalysts and curing conditions when aftertreated with glycerol on melamine resin finished fabric. The effects of Different processes of glycerol treatment, and different resins, urea resin and melamine resin, were compared. The conclusions obtained from the results are as follows: 1) It was shown hatt the aftertreatment with glycerol (treated without catalyst) was more effective than treated with catalysts in controlling free formaldehyde. 2) The optimum curing temperature and curing time for the glycerol aftertreatment without adversely affecting the other properties of fabric was about $160^{\circ}C$, 3 min. 3) According to the increase of glycerol concentration in both aftertreatment and simultaneous treatment the amounts of free formaldehyde was reduced. The rate of decrease was manifest within the limits of $6\%$ in the case of simultaneous treatment with glycerol ana resins, and $3\%$ in the case of glycerol aftertreatment on resin finished fabrics. 4) Dry wrinkle recovery angle was decreased the increase of glycerol concentration. Melamine resin had a little adverse effect than urea resin, particulary glycerol aftertreatment. 5) The breaking strength was increased with the increase of glycerol concentration.

  • PDF

Flow Properties of Liquid Epoxy Compounds as a Function of Filler Fraction for the Underfill (Underfill용 액상 Epoxy Compound의 Filler 충진에 따른 Flow특성 연구)

  • 김원호;황영훈;배종우;정혜욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2000
  • To develop the underfill materials which are required for the new process of semi-conductor industry, the properties of epoxy/anhydride/cobalt(II) catalyst system with two types of fused silica(1 $\mu\textrm{m}$, 8 $\mu\textrm{m}$) are studied as a function of filler fraction. According to the curing profile, the optimum catalyst amount was 1.0 wt% for full curing at the conditions of $160^{\circ}C$/l5 min., and we could conclude that the viscosity has superior effect on the real flaw through the relationship between surface tension and viscosity data. The underfills which were filled with 1 $\mu\textrm{m}$ fused silica did not show good flowability, but they should be useful by improving the viscosity for a future process which has small gaps. The underfills which were filled with 8 $\mu\textrm{m}$ fused silica showed good flowability when the filler contents were 55~60 vol%. The model which was referred by Matthew can predict the real flow length only when the underfill has high viscosity and low surface tension.

  • PDF

Effects of Hardeners and Catalysts on the Reliability of Copper to Copper Adhesive Joint (Cu-Cu 접착부의 고온고습 내구성에 미치는 경화제 및 촉매제의 영향)

  • Min, Kyung-Eun;Kim, Hae-Yeon;Bang, Jung-Hwan;Kim, Jong-Hoon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.283-287
    • /
    • 2011
  • As the performance of microelectronic devices is improved, the use of copper as a heat dissipation member is increasing due to its good thermal conductivity. The high thermal conductivity of copper, however, leads to difficulties in the joining process. Satisfactory bonding with copper is known to be difficult, especially if high shear and peel strengths are desired. The primary reason is that a copper oxide layer develops rapidly and is weakly attached to the base metal under typical conditions. Thus, when a clean copper substrate is bonded, the initial strength of the joint is high, but upon environmental exposure, an oxide layer may develop, which will reduce the durability of the joint. In this study, an epoxy adhesive formulation was investigated to improve the strength and reliability of a copper to copper joint. Epoxy hardeners such as anhydride, dihydrazide, and dicyandiamide and catalysts such as triphenylphosphine and imidazole were added to an epoxy resin mixture of DGEBA and DGEBF. Differential scanning calorimetry (DSC) analyses revealed that the curing temperatures were dependent on the type of hardener rather than on the catalyst, and higher heat of curing resulted in a higher Tg. The reliability of the copper joint against a high temperature and high humidity environment was found to be the lowest in the case of dihydrazide addition. This is attributed to its high water permeability, which led to the formation of a weak boundary layer of copper oxide. It was also found that dicyandiamide provided the highest initial joint strength and reliability while anhydride yielded intermediate performance between dicyandiamide and dihydrazide.

Chemorheological Behavior of Cyanate Ester Resin and Properties of Carbon Fiber Reinforced Polymer Composites (시아네이트 에스터 수지의 화학유변학적 거동 및 탄소섬유강화 고분자 복합재료의 물성)

  • Na, Hyo Yeol;Yoon, Byung Chul;Kim, Seung Hwan;Lee, Seong Jae
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • Carbon fiber reinforced polymer (CFRP) composites consist of carbon fibers in a polymer matrix. Recently, CFRP composites having high thermal stability and low outgassing are finding their use in high performance materials for aerospace and electronics applications under high temperature and high vacuum conditions. Cyanate ester resin is one of the most suitable matrix resins for this purpose. In this study, proper combination of cyanate ester and catalyst, curing behavior, and cure cycle were determined by chemorheology. Optimum condition was found to be catalyst content of 100 ppm and curing temperature of $150^{\circ}C$. Thermal stability and outgassing of cured resin composition were analyzed and the results showed thermal decomposition temperature of $385^{\circ}C$ and total mass loss of 0.29%. The CFRP prepregs and subsequent composites were fabricated by predetermined resin composition and the cure condition. Tensile moduli of the composites were compared with theoretical models and the results were very consistent.

Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins (불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-${\alpha}$,${\alpha}$,${\alpha}$-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa's equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, $\^$13/C NMR, and $\^$19/F NMR spectroscopy. The cure activation energy of FER/DDM system was 55.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.

A Study on the Preparation of Wood-Plastic Combinations(III) Preparation of Wood-Plastic Combinations by Thermal Curing Method

  • Kim, Jaerok;Lee, Kyung-Hee;Pyun, Hyung-Chick
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.301-305
    • /
    • 1972
  • The polymerization rates of monomer or monomer mixture impregnated with catalyst into domestic soft woods such as pinus densiflora, pinus rigida and poplus deltoides e. t. c. were measured. The results were compared with those obtained by radiation curing method and the following conclusions were derived ; (1) Pinus densiflora and pinus rigida are superior to the poplus deltoides, and methyl methacrylate(M. M. A. ) is more effective than other monomers as far as the polymerization rates are only taken into account. (2) The polymerization rate of vinyl acetate is generally slow. And the polymerization rate of the monomer is the slowest in case of being impregnated into poplus deltoides. However, the polymerization rate of the comonomer composed of vinylacetate and M. M. A. is the fastest among the other monomers or monomer mixtures in woods regardless of the curing method. (3) The general trend of polymerization of monomer in wood is similar to that of monomers themselves in both curing methods if the woods contain not much resin.

  • PDF

Studies on Cure Behaviors and Rheological and Mechanical Properties of Epoxy/Polyurethane Blend System initiated by Latent Thermal Catalyst (열잠재성 촉매에 의한 에폭시/폴리우레탄 블랜드계의 경화거동, 유변학적 및 기계적 물성에 관한 연구)

  • Gang, Jun-Gil;Gwon, Su-Han;Park, Su-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.233-240
    • /
    • 2002
  • In this work, the cure kinetics and rheological and mechanical properties of diglycidylether of bispheonol A (DGEBA, EP)/polyurethane (PU) blends were investigated. The 1 wt% N-benzylpyrazinium hexafluoroantiminate (BPH) was used as a latent thermal catalyst. Latent properties were performed by measurement of the conversion as a function of reaction temperature using DSC. And the rheological properties of the blend systems were investigated under isothermal conditions using a rheometer. Crosslinking activating energies (Ec) were also determined from the Arrhenius equation based on gel time and curing temperature. The impact strengths were measured as mechanical properties of the casting specimens. The BPH in the blend systems could be an excellent latent thermal catalyst without any co-initiator. The rheological results showed that Ec was highest when PU content was 30 wt% which was in good agreement with the impact strengths. This was probably due to the intermolecular hydrogen bonding between the hydroxyl group in PU and EP, resulting in increasing the crosslinking density.