• 제목/요약/키워드: curing catalyst

검색결과 90건 처리시간 0.031초

Evaluation of Bond Performance of Self-Healing Agents Using Single lap Shear Test (Single Lap 전단시험을 적용한 자가치료제의 접착성능 평가)

  • 윤성호;박희원;허광수
    • Composites Research
    • /
    • 제17권4호
    • /
    • pp.40-46
    • /
    • 2004
  • A single lap shear test was used to investigate the effects of the ratio of a catalyst to a self-healing agent and curing temperature on the bond performance of autonomic polymer composites. DCPD (dicyclopentadiene), ENB (5-ethylidene-2-norbornene), and their mixture were used as self-healing agents and bis(triclohexylphosphine) benzyllidine ruthenium (IV) dichloride Grubbs' catalyst was used as a catalyst. During the experiments, the catalyst ratios of 1.0wt% and 0.5wt% were applied to DCPD, the catalyst ratio of 0.lwt% was applied to ENB, and the catalyst ratio of 0.5wt% was applied to the mixtutes of DPCD and ENB. In addition, the curing temperatures of $25^{\circ}C$, $60{\circ}C$, and $80^{\circ}C$ were considered. According to the results, the higher catalyst ratio and the longer curing time were required to obtain more stabilized bond shear strength of DCPD. ENB with a lower catalyst ratio was cured faster than DCPD. Unlike DCPD, ENB stabilized after a steady fall from its peak as the curing time increased. Moreover, the mixtures of DCPD and ENB revealed similar curing behavior to ENB, but the increase in mixture ratio of ENB to DCPD caused curing process to be faster. Also the increase in curing temperature caused the bond shear strength to be higher and the curing time to be quicker.

Effect of Curing Agent on the Curing Behavior and Joint Strength of Epoxy Adhesive (에폭시 접착제의 경화거동 및 접합강도에 미치는 경화촉매제의 영향)

  • Kim, Min-Su;Kim, Hae-Yeon;Yoo, Se-Hoon;Kim, Jong-Hoon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.54-60
    • /
    • 2011
  • Adhesive bonding is one of the most promising joining methods which may substitute for conventional metallurgical joining processes, such as welding, brazing and soldering. Curing behavior and mechanical properties of adhesive joint are largely dependent on the curing agent including hardener and catalyst. In this study, effects of curing system on the curing behavior and single-lap shear strength of epoxy adhesive joint are investigated. Dihydrazide, anhydride and dicyandiamide(DICY) were chosen as hardener and imidazole and triphenylphosphine(TPP) were chosen as catalyst. In curing behavior, TPP showed the delay of the curing rate for DICY and ADH at $160^{\circ}C$, compared to imidazole catalyst due to the high curing onset/peak temperature. DICY seemed to be most beneficial in the joint strength for both steel and Al adherends, although the type of adherends affected the shear strength of epoxy adhesive joint.

Analysis of Chemical and Mechanical Properties of UV Curing Resin (UV 경화 수지의 화학적 기계적 경화특성 분석)

  • Jang, Yong-Soo;Kim, Jeong-Keun;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권6호
    • /
    • pp.88-95
    • /
    • 2020
  • Currently, Fiber-Reinforced Plastic (FRP) composite materials are used in many industrial fields, owing to their superior stiffness and specific strength compared to metals. However, there are issues with FRP inefficiency, due to low productivity of such materials, environmental problems they pose and long curing times needed. Trying to address these issues, research was conducted towards the development of a FRP composite material with excellent properties and short production time, introducing a curing method using a UV lamp. Four types of composite materials were prepared, cured with catalyst or UV (CZ: Catalyst + ZNT 6345, CR: Catalyst + RF 1001 MV, UVZ: Photoinitiator + ZNT 6345, and UVR: Photoinitiator + RF 1001 MV). Examination of the chemical and mechanical properties of these composites showed that UV-cured materials performed better than the catalyst-cured ones. These results indicate that the production process of FRP composite materials can be simplified by using a UV lamp for curing, resulting in composite materials with the same quality, but reduced production time by about 70% compared to currently used practices. This advancement will contribute greatly to the composite material industry.

Curing Behavior by Rotation Rheometer of Acrylic High-Solid Coatings (아크릴계 하이솔리드 도료의 Rotation Rheometer에 의한 경화거동 연구)

  • Yang, In-Mo;Jung, Choong-Ho;Kim, Tae-Ok;Park, Hong-Soo;Park, Eun-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • 제18권1호
    • /
    • pp.40-48
    • /
    • 2001
  • Curing reaction was carried out with the acrylic resin (ACR) [n-butyl acrylate/atyrene/2-hydroxyethyl methacrylate/acetoacetoxyethyl methacrylate (AAEM)] synthesized before and a curing agent, hexamethoxymethylmelamine (HMMM). With rotational rheometer, the effect of catalysts on curing rate of acrylic resin/melamine was examined. Among the four catalysts used, p-toluene sulfonic acid showed the highest reactivity, and the optimum amount of catalyst was 0.5 phr. It was observed that in the ACR/HMMM curing reaction, gelation point was lowered with the increasing the amount of AAEM and HMMM in the ACR.

Effects of Catalysts on the Adhesive Properties for Flip Chip Bonding (플립칩 본딩용 접착제 특성에 미치는 촉매제의 영향)

  • Min, Kyung-Eun;Lee, Jun-Sik;Yoo, Se-Hoon;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • 제20권12호
    • /
    • pp.681-685
    • /
    • 2010
  • The application of flip chip technology has been growing with the trend of miniaturization of electronic packages, especially in mobile electronics. Currently, several types of adhesive are used for flip chip bonding and these adhesives require some special properties; they must be solvent-free and fast curing and must ensure joint reliability against thermal fatigue and humidity. In this study, imidazole and its derivatives were added as curing catalysts to epoxy resin and their effects on the adhesive properties were investigated. Non-isothermal DSC analyses showed that the curing temperatures and the heat of reaction were dependent primarily on the type of catalyst. Isothermal dielectric analyses showed that the curing time was dependent on the amount of catalysts added as well as their type. The die shear strength increased with the increase of catalyst content while the Tg decreased. From this study, imidazole catalysts with low molecular weight are expected to be beneficial for snap curing and high adhesion strength for flip chip bonding applications.

Curing Properties of HTPB-based Solid Propellants (HTPB계 고체추진제의 경화 특성에 관한 연구)

  • Su-A Jeon;Jee-Hun Ahn;Hang-seok Seo;Han-Jun Kim;Eui-yong Park
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제26권6호
    • /
    • pp.28-33
    • /
    • 2022
  • In this study, the curing characteristics of commonly used Hydroxyl terminated polybutadiene(HTPB)-based solid propellant according to the curing temperature and Equivalent ratio change were investigated. In addition, the effect of curing reaction according to their ratio and content in the Triphenyl bismuth(TPB), Maleic anhydride(MA) and Magnesium oxide(MgO) catalyst systems was confirmed. Finally, moisture was added for each propellant mixing process to check the effect of moisture on propellant curing.

Synthesis and Curing Behavior of Crystalline Biphenyl Epoxy Resin (결정성 바이페닐 에폭시 합성 및 경화 거동 연구)

  • Choi, Bong-Goo;Choi, Ho-Kyoung;Choi, Jae-Hyun;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.44-51
    • /
    • 2020
  • The basic catalyst 1-benzyl-3-methyl-imidazolium hexafluoroantimonate (BMH) was synthesized and analyzed by FT-IR and 1H-NMR. A crystalized biphenyl-based epoxy was synthesized by using tetramethyl biphenol (TMBP) and epichlorohdrine. In order to consider the curing tendency of the synthesized BMH, the mass ratio was changed to 0.5, 1.0, 2.0 wt.% under heated conditions and the curing tendency was analyzed by differential scanning calorimeter (DSC). As a result, the BMH catalyst showed a fast curing result in the stepwise heating pr℃ess of the biphenol-A epoxy and the cationic polymer. From these results, the BMH catalyst showed excellent thermal stability as a potential heat curing catalyst. In addition, we considered the application possibility of epoxy molding compound (EMC) which required a skeleton structure and a high heat resistance because the synthesized biphenyl epoxy had a characteristic of rapidly lowering viscosity at a constant temperature and a rigid skeleton structure of biphenol. As a result, it was confirmed that the TMBP-based epoxy developed in this study was composed of a crystalline structure, and a curing reaction was observed with a Novolac resin at a high temperature. In the presence of a catalyst, a curing reaction was observed around 150 ℃ and thus TMBP-based epoxy was successfully applied as a raw material of EMC.

Curing efficiency of various resin-based materials polymerized through different ceramic thicknesses and curing time

  • Lee, Jung-Won;Cha, Hyun-Suk;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.126-131
    • /
    • 2011
  • PURPOSE. The aim of this in vitro study was to examine the curing efficiency of various resin-based materials polymerized through ceramic restorations with 3 different thicknesses. Curing efficiency was evaluated by determining the surface microhardness (VHN) of the resin specimens. MATERIALS AND METHODS. Four kinds of resin materials were used. Z350 (3M ESPE $Filtek^{TM}$ Z350: A2 Shade), Z250 (3M ESPE $Filtek^{TM}$ Z250: A2 Shade) and $Variolink^{(R)}$ II (VL: Ivoclar vivadent, base: transparent) either with or without a self-curing catalyst (VLC: Ivoclar vivadent, catalyst: low viscosity/transparent) were filled into the silicone mold (10 mm diameter, 1 mm thick). They were cured through ceramic discs (IPS e.max Press MO-0 ingot ivoclar vivadent, 10 mm diameter, 0.5, 1 and 2 mm thicknesses) by LED light-curing units for 20 and 40 seconds. Vicker's microhardness numbers (VHNs) were measured on the bottom surfaces by a microhardness tester. Data were analyzed using a 3-way analysis of variance (ANOVA) at a significance level of 0.05. RESULTS. The thickness of ceramic disc increased, the VHNs of all four resin types were decreased (P<.05). The mean VHN values of the resins light cured for 40 seconds were significantly higher than that of LED for 20 seconds in all four resin materials (P<.05). VLC showed significantly higher VHN values than VL regardless of other conditions (P<.05). Z350 and Z250 showed higher values than VL or VLC (P<.01). CONCLUSION. Thinner ceramic disc with increased curing time resulted higher VHN values of all resin materials. The use of a catalyst produced a greater hardness with all polymerization methods. Restorative resin materials (Z350, Z250) showed higher VHN values than resin cement materials (VL, VLC).

A Study on the Strengths of Polyurethane Morthar Cured under Low Temperature Condition (저온양생한 폴리우레탄 모르타르의 강도특성에 관한 연구)

  • 오종석;정효석;박홍신;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.337-342
    • /
    • 1999
  • The Purpose of this study is to evaluate the strength characteristics of polyurethane(PUR) mortar cured under low temperature condition. PUR mortars are prepared with various catalyst content, methylene chloride(MC) content as a viscosity reducing agent, and curing age at low temperature condition of $0^{\circ}C$, -5$^{\circ}C$ and -1$0^{\circ}C$, tested for working life, compressive and flexural strengths. From the test results, the catalyst and MC contents affect the degree of hardening and blowing of PUR mortar. Strengths increase with an increasing catalyst content at low temperature. Flexural and compressive strength of PUR mortar are about 177kgf/$\textrm{cm}^2$ and 490kgf/$\textrm{cm}^2$ respectively at curing temperature of -1$0^{\circ}C$ with catalyst content of 0.4%. Therefore, it is apparent that this PUR mortars have a sufficient strengths for repair of concrete structures.

  • PDF

Olefin Metathesis Curing Reaction of Essential Oils in Korean Dendropanax Lacquer (Olefin Metathesis를 이용한 황칠 Essential Oil의 경화 반응에 관한 연구)

  • Kim, Mi Ri;Lee, Won Hwi;Yoo, Hye Jin;Kim, Jong Sang;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • 제16권4호
    • /
    • pp.146-151
    • /
    • 2015
  • Raw sap of essential oil in Korean Dendropanax lacquer was extracted with ethanol, and which was cured by using ROMP (ring opening metathesis polymerization, one of olefin metathesis). Curing behavior with subsequent film properties were studied and compared with conventional curing (under ambient conditions) and UV photo curing. The compositional changes of major ingredients in the lacquer before and after curing were studied by using GC-MS (gas chromatography mass spectrometry). ROMP-cured coating film showed higher gel contents (40%) as compared to those of conventional (8%) and UV curing (25%). ROMP curing with 2 wt% Grubbs' catalyst at $100^{\circ}C$ completed curing reaction within 2 h, which was much faster than that of conventional curing. The quality of coating film prepared with ROMP was more homogeneous and wrinkle-free as compared with that with UV curing. It was found that major ingredients of sesquiterpenes, such as ${\alpha}$-selinene, ${\beta}$-selinene, and ${\delta}$-cadinene were reacted in ROMP, as well as polyacetylenes.