• Title/Summary/Keyword: curdlan production

Search Result 13, Processing Time 0.029 seconds

Production of Extracellular Water Insoluble ${\beta}-1,3-Glucan$ (Curdlan) from Bacillus sp. SNC07

  • Gummadi, Sathyanarayana N.;Kumar, Kislay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.546-551
    • /
    • 2005
  • [ ${\beta}-1,3-Glucan$ ] (curdlan) is a water-insoluble polysaccharide composed exclusively of ${\beta}-1,3\;linked$ glucose residues. Extracellular curdlan was mostly synthesized by Agrobacterium species and Alcaligenes faecalis under nitrogen-limiting conditions. In this study, we screened the microorganisms capable of producing extracellular curdlan from soil samples. For the first time, we reported Gram-positive bacterium Bacillus sp. SNC 107 capable of producing extracellular curdlan in appreciable amounts. The effect of different carbon sources on curdlan production was studied and found that the yield of curdlan was more when glucose was used as carbon source. It was also found that maximum production was achieved when the initial concentration of ammonium and phosphate in the medium was 0.5 and 1.9 g/L respectively. In this study the curdlan production was increased from 3 to 7g/L in shake flask cultures.

Improved Production of Curdlan with Concentrated Cells of Agrobacterium sp.

  • Jung, Dae-Young;Cho, Young-Su;Chung, Chung-Han;Jung, Dai-Il;Kim, Kwang;Lee, Jin-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.107-111
    • /
    • 2001
  • The addition of a limited concentration of yeast extract to a minimal salt medium (MSM) enhanced cell growth and increased the production of curdlan whereas nitrogen-limitation was found to be essential for the higher production of curdlan by Agrobacterium sp. ATCC 31749. As the amount of the inoculum increased, the cell growth as well as the production of curdlan also increased in the MSM without a nitrogen source. The cell growth and production of curdlan increased as the initial pH of the medium decreased as low as 5.0. The conversion rate and concentration of curdlan from 2% (w/v) glucose in the MSM with concentrated cells under nitrogen deletion was 67% and 13.4 g/L, respectively. The highest conversion rate of curdlan under the conditions optimized in this study was 71% when the glucose concentrations was 1% (w/v).

  • PDF

Production of curdlan with agro-industrial byproduct by Agrobacterium sp. ATCC 31749

  • Jeong, Dae-Yeong;Kim, Hyeon-Suk;Seo, Hyeong-Pil;Lee, Nam-Gyu;Kim, Ji-Mo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.251-254
    • /
    • 2000
  • Effect of carbon sources including agro-industrial byproduct on cell growth and production of curdlan by Agrobacterium sp. ATCC 31749 was investigated. Maximal production of curdlan was obtained when the carbon source was sucrose. The conversion rate of curdlan from 2% (w/v) sucrose was 59%. Glucose, mannose and maltose were also found to be good carbon sources for production of curdlan. Production of curdlan increased up to 3% (w/v) glucose as the carbon source and then decrease as the concentration of glucose increased. The major components of agro-industrial byproduct (AIB) were glucose, maltose, and maltose, and maltotriose. Agrobacterium sp.ATCC 31749 utilized up to 25% (v/v) AIB and produced curdlan with 29.8g/1.

  • PDF

A High Viscosity of Curdlan at Alkaline pH Increases Segregational Resistance of Concrete (염기성 pH에서의 고점도 커들란에 의한 콘크리트의 재료분리 억제 효과 증진)

  • 이인영;김선원;이중헌;김미경;조인성;박영훈
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.114-118
    • /
    • 1999
  • In order to use a polysaccharide, curdlan, as a concrete admixture, we first developed a pilot-scale fermentation process for the mass production of curdlan. We also examined the rheological properties of curdlan, and tested how well the curdlan obtained in this work increased the segregational resistance of the cement slurry. Fermentation was performed in a 300-liter fermenter equipped with 3 disk-turbine impellers. Since curdlan production is stimulated under nitrogen-limiting conditions, the culture pH was shifted from the optimal pH for cell growth (pH 7.0) to the optimal pH for curdlan production (pH 5.5) at the onset of ammonium exhaustion. We obtained a curdlan production of 65 g/L in 120 hr batch cultivation of Agrobacterium species. The insoluble curdlan at the final stage of fermentation was readily harvested by centrifugation together with the cells. The freeze-dried sample contained 78% (w/w) of curdlan. The solubility and viscosity of the curdlan increased with the increase of the solution pH, which enhances the viscosity of concrete since the pH of concrete is extremely high (pH 13.0). Test results of the curdlan as a concrete admixture with cement slurry demonstrated that it prohibits the leakage of water. In conclusion, this work certifies and enlarges curdlan's industrial potential as a concrete admixture.

  • PDF

Evaluation of physicochemical and textural properties of myofibrillar protein gels and low-fat model sausage containing various levels of curdlan

  • Lee, Chang Hoon;Chin, Koo Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.144-151
    • /
    • 2019
  • Objective: Curdlan has been widely used as a gelling agent in various food systems. This study was performed to evaluate the rheological properties of pork myofibrillar protein (MP) with different levels of curdlan (0.5% to 1.5%) and its application to low-fat model sausages (LFS). Methods: MP mixtures were prepared with 0.5%, 1.0%, and 1.5% of curdlan. Cooking loss (%), gel strength (gf), shear stress (Pa), and scanning electron microscopy were measured. Physicochemical and textural properties of LFS containing different levels of curdlan were measured. Results: The shear stress of MP mixtures increased with increasing levels of curdlan. MP gels with increased levels of curdlan decreased cooking loss and increased gel strength (p<0.05). The MPs with 1.0% and 1.5% of curdlan were observed more compact three-dimensional structure than those with 0.5% curdlan. Increased curdlan level in LFS affected redness ($a^{\star}$) and yellowness ($b^{\star}$) values. Although expressible moisture of LFS did not differ among curdlan levels, LFSs with various levels of curdlan decreased cooking loss as compared to control sausages. Hardness values (2,251 to 2,311 gf) of LFS with 0.5% and 1.0% curdlan was increased and differ from those (1,901 gf) of control sausages. Conclusion: The addition of 1.0% curdlan improved the functional and textural properties of LFS.

Co-stimulation of TLR4 and Dectin-1 Induces the Production of Inflammatory Cytokines but not TGF-${\beta}$ for Th17 Cell Differentiation

  • Chang, JiHoon;Kim, Byeong Mo;Chang, Cheong-Hee
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.30-37
    • /
    • 2014
  • Collaboration of TLR and non-TLR pathways in innate immune cells, which acts in concert for the induction of inflammatory cytokines, can mount a specific adaptive immune response tailored to a pathogen. Here, we show that murine DC produced increased IL-23 and IL-6 when they were treated with LPS together with curdlan that activates TLR4 and dectin-1, respectively. We also found that the induction of the inflammatory cytokine production by LPS and curdlan requires activation of IKK. However, the same treatment did not induce DC to produce a sufficient amount of TGF-${\beta}$. As a result, the conditioned media from DC treated with LPS and curdlan was not able to direct $CD4^+$ T cells to Th17 cells. Addition of TGF-${\beta}$ but not IL-6 or IL-$1{\beta}$ was able to promote IL-17 production from $CD4^+$ T cells. Our results showed that although signaling mediated by LPS together with curdlan is a potent stimulator of DC to secrete many pro-inflammatory cytokines, TGF-${\beta}$ production is a limiting factor for promoting Th17 immunity.

The Structure Analysis and Biosynthesis of $\beta$-glucan by Alcaligenes faecalis (Alcaligenes faecalis에 의한 $\beta$-glucan의 생합성과 구조 분석)

  • Ryu, Kang;Lee, Ki-Young;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2001
  • Biosynthesis of curdlan( ${\beta}$-1,3 glucan) was shown by fluorscence on cellufluor medium. The highest production of curdlan was produced when glucose was used as a carbon source and ($NH_4$)$_2$$SO_4$ was used as a nitrogen source. ${\beta}$ -form of curdlan was detected in the fingerprint region (890 $cm^{-1}$) by FT-IR spectrum and shown homogeneous ${\beta}$ -1,3 glucan by $^{13}C$ NMR spectrum ($C_1$-103 ppm, $C_2$-73.2 ppm, $C_3$-86.4 ppm, $C_4$-68.7 ppm, $C^{5}$-76.63 ppm, $C_{6}$-61.2 ppm). Transition of structure from triple helix coil form to random coil form was appeared at 0.1 ∼0.25 M NaOH concentration. It was shown that natural curdlan is a triple helix form in neutral but becomes weak in alkaline condition.

  • PDF

Development of Nanoenzymes for the Production of Glucose from Seaweed and Various Polysaccharide (해조류 및 다당류로부터 포도당 생산을 위한 나노효소 개발 및 특성)

  • Jin, Lie-Hua;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.453-458
    • /
    • 2010
  • The magnetically separable polyaniline nanofiber enzymes were developed for the recycle of enzyme and enhanced enzyme stability. The stability of enzyme was maintained over 90% for 8 days under room temperature and vigorous shaking conditions (200 rpm). The residual activity of immobilized enzyme was over 60% after 8 days incubation at $55^{\circ}C$. Glucose was produced from various polysaccharides, agarose, curdlan, cellulose, and sea weed, using magnetically separable immobilized enzyme. Glucose production rate with curdlan was 1.2 g/(l h) and showed high decomposition rate due to high mass transfer. After 10 times recycle, the residual activity of immobilized enzyme was over 75%. 1 g/L of glucose was produced with 5 mg of immobilized enzymes.

Agrobacterium sp. ATCC 31750의 고농도 세포배양

  • Jang, Jeong-Gyun;Cha, Wol-Seok;Gang, Si-Hyeong;Park, Jae-Eok;Lee, Jung-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.245-246
    • /
    • 2000
  • Agrobacterium sp. ATCC 31750( formerly Alcaligenes faecalis subsp myxogenes) was used to produce curdlan. Since the curdlan is secondary metabolite, it is important for curdlan production to increase cell concentration. The fedbatch operation was used to increase cell concentration with addition of carbon and nitrogen sources. When the initial sucrose concentration was 20g/L, it was consumed in 24 hrs and the cell concentration was 6g/L in a batch culture. The sucrose solution(200g/L) was fed to control the sucrose concentration above 10g/L.

  • PDF