• Title/Summary/Keyword: curcuminoids

Search Result 35, Processing Time 0.031 seconds

Solid Phase Extraction(SPE) of Curcuminoids from Turmeric by Optimization Analytical Condition (최적 분석조건에 의한 강황으로부터 Curcuminoids의 고체상추출(SPE))

  • Lee, Kwang Jin;Ma, Jin Yeul;Kim, Young Jun;Kim, Young Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4927-4935
    • /
    • 2012
  • Turmeric is a medicinal herb with various pharmacological activities. Curcumin, demethoxycurcumin(DMC) and bisdemethoxycurcumin(BDMC) were extracted from turmeric by dipping and ultrasonic wave method. And extraction efficiency was identified using solid phase extraction(SPE). The extracted sample were simultaneously separated and analyzed from three kinds of commercial $C_{18}$ reversed-phase high performance liquid chromatography using water and acetonitrile as mobile phase with isocratic elution mode. Flow rate 1.0mL/min, injection volume $10{\mu}L$ and column oven temperature $40^{\circ}C$ at 425nm wavelength has been conducted. From the experimental results, the optimum mobile phase composition of water/acetonitrile 50/50vol% using RS tech column. It is evident that the amount of curcuminoids extracted(extraction time 4h) by 100% MeOH was higher than any aqueous MeOH composition. Finally, in 100% water extraction, the amount(mAU${\times}$mim) of curcuminoids extracted by SPE was 14.3 and 24.5 times respectively higher than ultrasonic wave and dipping method. The shown results can be applied as sources for pharmaceuticals and functional material.

Development of Turmeric Extract Nanoemulsions and Their Incorporation into Canned Ham

  • Kim, Seung Wook;Garcia, Coralia V.;Lee, Bom Nae;Kwon, Ho Jeong;Kim, Jun Tae
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.889-897
    • /
    • 2017
  • In this study, a nanoemulsion formulation for encapsulating turmeric extract was developed and its physicochemical characteristics including particle diameter, zeta potential, polydispersity index, and stability were determined. The turmeric nanoemulsion (TE-NE) droplets exhibited small diameter (165 nm), low PDI (0.17), and high zeta potential (-31.80 mV), all desirable characteristics in nanoemulsions, as well as stability in a wide range of pH. The TE-NE was spray-dried as a means to allow its incorporation into food products and reduce potential transport and storage costs. The resulting powder exhibited a pale yellowish appearance and had a curcuminoids content of 0.39 mg/g. The spray-dried TE-NE powder was incorporated into minced pork to make canned ham, and the sensory characteristics of the ham were evaluated. As a result, the canned ham incorporating TE-NE powder received the same overall acceptability score as the control, and only exhibited slight yellowing. By contrast, ham incorporating turmeric extract exhibited substantial yellowing, and its appearance was considered less acceptable by the panelists. Therefore, the TE-NE formulation could be incorporated into canned ham and other meat products without substantially affecting their sensory qualities.

HPLC Method for Simultaneous Quantitative Detection of Quercetin and Curcuminoids in Traditional Chinese Medicines

  • Ang, Lee Fung;Yam, Mun Fei;Fung, Yvonne Tan Tze;Kiang, Peh Kok;Darwin, Yusrida
    • Journal of Pharmacopuncture
    • /
    • v.17 no.4
    • /
    • pp.36-49
    • /
    • 2014
  • Objectives: Quercetin and curcuminoids are important bioactive compounds found in many herbs. Previously reported high performance liquid chromatography ultraviolet (HPLC-UV) methods for the detection of quercetin and curcuminoids have several disadvantages, including unsatisfactory separation times and lack of validation according the standard guidelines of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Methods: A rapid, specific, reversed phase, HPLC-UV method with an isocratic elution of acetonitrile and 2% v/v acetic acid (40% : 60% v/v) (pH 2.6) at a flow rate of 1.3 mL/minutes, a column temperature of $35^{\circ}C$, and ultraviolet (UV) detection at 370 nm was developed. The method was validated and applied to the quantification of different types of market available Chinese medicine extracts, pills and tablets. Results: The method allowed simultaneous determination of quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin in the concentration ranges of $0.00488-200{\mu}g/mL$, $0.625-320{\mu}g/mL$, $0.07813-320{\mu}g/mL$ and $0.03906-320{\mu}g/mL$, respectively. The limits of detection and quantification, respectively, were 0.00488 and $0.03906{\mu}g/mL$ for quercetin, 0.62500 and $2.50000{\mu}g/mL$ for bisdemethoxycurcumin, 0.07813 and $0.31250{\mu}g/mL$ for demethoxycurcumin, and 0.03906 and $0.07813{\mu}g/mL$ for curcumin. The percent relative intra day standard deviation (% RSD) values were $0.432-0.806{\mu}g/mL$, $0.576-0.723{\mu}g/mL$, $0.635-0.752{\mu}g/mL$ and $0.655-0.732{\mu}g/mL$ for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively, and those for intra day precision were $0.323-0.968{\mu}g/mL$, $0.805-0.854{\mu}g/mL$, $0.078-0.844{\mu}g/mL$ and $0.275-0.829{\mu}g/mL$, respectively. The intra day accuracies were 99.589%-100.821%, 98.588%-101.084%, 9.289%-100.88%, and 98.292%-101.022% for quercetin, bisdemethoxycurcumin, demethoxycurcumin and curcumin, respectively, and the inter day accuracy were 99.665%-103.06%, 97.669%-103.513%, 99.569%-103.617%, and 97.929%-103.606%, respectively. Conclusion: The method was found to be simple, accurate and precise and is recommended for routine quality control analysis of commercial Chinese medicine products containing the flour flavonoids as their principle components in the extracts.

Sulfur Dioxide, Heavy Metal and Curcumin Contents in Market-Available Turmeric (Curcuma longa L.) (유통 강황의 이산화황, 중금속 및 쿠르쿠민 함량)

  • Lee, Young Ju;Kim, Ae Kyung;Kim, Ouk Hee;Lee, Chun Young;Lee, Hyun Kyung;Jung, Sun Ok;Lee, Sae Ram;Kim, Hee Sun;Kim, Il Young;Yu, In Sil;Jung, Kweon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • Background: Turmeric (Curcuma longa L.) that is used as a food material has antioxidant, anticancer and anti-inflammatory properties. Recently the demand for functional foods and drugs has increased. The present study was carried out to determined of contents of residual sulfur dioxide, heavy metals, ash, acid insoluble ash and curcuminoids in turmeric from the Seoul Yak-ryeong market. Methods and Results: A total of 31 samples were obtained. Residual sulfur dioxide was not detected in any samples. Heavy metals (arsenic, cadmium, lead and mercury) were analyzed by ICP-MS (Inductively Coupled Plasma Mass Spectrometer) and a mercury analyzer and were detected in the ranges of 0.00 - 0.28, 0.00 - 0.07, 0.00 - 0.29 and 0.002 - 0.027mg/g respectively. No significant difference were observed between the average heavy metal contents of domestic and imported tumeric. However, average content of ash in domestic samples (7.8%) were significantly higher than that in imported samples (6.1%), whereas that of curcuminoids was significantly higher in imported samples (47.6mg/g) than in domestic samples (11.2mg/g). The average content of acid insoluble ash was not significantly different between two sample types (0.9% in each). Conclusions: There are no specific standards for turmeric used as food materials. Therefore, this study can be provided as basic data for the establishment of quality standards for turmeric.

Changes in chemical properties and cytotoxicity of turmeric pigments by microwave treatment (마이크로파처리에 의한 심황색소의 화학안정성 및 세포독성 변화)

  • Song, EiSeul;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.693-698
    • /
    • 2017
  • Turmeric is a yellow food-coloring spice containing curcuminoids, curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BMC), which have several physiological effects. In the present study, the effect of microwave irradiation on the chemical properties, antioxidant activity, and cytotoxicity of turmeric were investigated. Degradation of turmeric pigments was accelerated upon increase in irradiation time or intensity at 405 nm. Residual levels of curcumin, DMC, and BMC after 5 minutes of irradiation at 700 W were 11.3, 34.4, and 71.2%, respectively. Scavenging activities of turmeric pigment against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) peroxyl radical and nitrite were enhanced significantly after microwave radiation. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity remained unaffected. Cytotoxic activity of turmeric was significantly reduced, and hydrogen peroxide generated from turmeric increased after microwave irradiation. The results obtained indicate that microwave irradiation affects chemical stability and bioactivity of turmeric pigment. Hence, these effects should be considered when processing foods containing turmeric pigments.

Dietary addition of a standardized extract of turmeric (TurmaFEEDTM) improves growth performance and carcass quality of broilers

  • Johannah, NM;Ashil, Joseph;Balu, Maliakel;Krishnakumar, IM
    • Journal of Animal Science and Technology
    • /
    • v.60 no.5
    • /
    • pp.8.1-8.9
    • /
    • 2018
  • Background: Indiscriminate use of antibiotics in livestock and poultry farming has caused emergence of new pathogenic strains. The situation has warrented the development of safe and alternative growth promoters and immunity enhancers in livestock. Herbal additives in animal and bird feed is a centuries-old practice. Thus, the present study investigated the efficacy of a standardized formulation of lipophilic turmeric extract containing curcumin and turmerones, (TF-36), as a natural growth promoter poultry feed additive. Methods: The study was designed on 180 one-day old chicks, assigned into three groups. Control group ($T_0$) kept on basal diet and supplemented groups $T_{0.5}$ and $T_1$ fed with 0.5% and 1% TF-36 fortified basal diet for 42 days. Each dietary group consisted of six replicates of ten birds. Body weight, food intake, food conversion ratio, skin colour, blood biochemical analysis and antioxidant status of serum were investigated. Results: Body weight improved significantly in $T_1$ with a 10% decrease in FCR as compared to the control. TF-36 supplementation in $T_1$ enhanced the antioxidant enzyme activity significantly (p < 0.05) with a decrease (p < 0.05) in lipid peroxidation. It also caused a slight yellow skin pigmentation without any change in meat color, indicating the bioavailability of curcumin from TF-36. However, no significant change in the concentration of serum creatinine, total protein and liver enzyme activities were observed, indicating the safety. Conclusion: In summary, we concluded that TF-36 can be a natural feed additive to improve growth performance in poultry, probably due to the better antioxidant activity and antimicrobial effects contributed by the better bioavailability of curcuminoids and turmerones. Besides, curcuminoids and turmerones were also known to be gastroprotective and anti-inflammatory agents.

Synthetic Curcumin Derivatives Inhibit Jun-Fos-DNA Complex Formation

  • Kim, Hyun-Kyung;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1769-1774
    • /
    • 2004
  • Jun/Fos, a crucial factor in transmitting the tumor-promoting signal from the extracellular environment to the nuclear transcription machinery, has a dimerization interface possessing several coiled structural properties. Jun and Fos can interact with the DNA regulatory region, AP-1 (Activator Protein-1), which is composed of 5'-TGAC/GTCA-3'.$^1$ Curcumin is a well-known anticancer and anti-inflammatory compound.$^{2,3}$ It also acts as an inhibitor of the Jun-Fos function. c-Fos and c-Jun with a bZIP region are overexpressed in BL21 E. coli and purified with an $Ni^{2+}$ affinity column. The inhibitors of Fos-Jun-AP-1 complex formation were searched through the EMSA (electrophoresis mobility shift assay) experiment, and new curcuminoids were synthesized and investigated as to their inhibitory effect on the same system. Two curcuminoids showed a stronger inhibitory effect than curcumin. This inhibitory activity was quantified with EMSA. 1,7-bis(4-methyl)-1,6-heptadiene-3,5-dione (BJC003) and 1,7-bis(4-hydroxy-5-methoxy-3-nitrophenyl)-1,6-heptadiene-3,5-dione (BJC005) showed remarkably high inhibitory activities. $IC_{50}$ of 1,7-bis(4-methyl)-1,6-heptadiene-3,5-dione (BJC003) and 1,7-bis(4-hydroxy-5-methoxy-3-nitrophenyl)-1,6-heptadiene-3,5-dione (BJC005) are 8.98 ${\mu}M$ and 5.40 ${\mu}M$, respectively. However, 1,7-bis(4-methyl-3-nitrophenyl)-1,6-heptadiene-3,5-dione (BJC004) did not show inhibitory activity.

Analysis of the Degradation Products of Turmeric using GC-MS (GC-MS법을 이용한 울금의 퇴화물 분석)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.859-868
    • /
    • 2007
  • Degradation products of the dye extracted from turmeric and the turmeric dyed textiles were examined by using GC-MS after 100 oven (OV) and $H_2O_2/UV/O_2$(PER) treatments for up to 28 days. Throughout the OV degradation times, 2-propenoic acid, 3-(2-hydroxyphenyl)- was found consistently, while isovanillin, and vanillic acid were newly detected. In 28 day PER degradation sample, feruloylmethane, 2-propenoic acid, 3-(2-hydroxyphenyl)-, benzoic acid, and vanillic acid were detected as well as isovanillin. Feruloylrnethane, and 2-propenoic acid, 3-(2-hydroxyphenyl)- were detected from the degraded fabric samples. With the absence of curcuminoids in the GC-MS result, the decreasing pattern of 2-propenoic acid, 3-(2-hydrokyphenyl)- reflect the degradation of curcuminoids in turmeric extraction with the progression of OV degradation times. It is suggested that isovanillin, feruloylmethane, 2-propenoic acid,3-(2-hydroxyphenyl)-, and vanillic acid are the probable fingerprint products for determining the turmeric dye from the badly faded archaeological textiles.

Characterization of Natural Compounds as Inhibitors of NS1 Endonuclease from Canine Parvovirus Type 2

  • So-Hyung Kwak;Hayeong Kim;Hyeli Yun;Juho Lim;Dong-Hyun Kang;Doman Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.788-796
    • /
    • 2023
  • Canine parvovirus type 2 (CPV-2) has high morbidity and mortality rates in canines. Nonstructural protein 1 (NS1) of CPV-2 has endonuclease activity, initiates viral DNA replication, and is highly conserved. Thus, it is a promising target for antiviral inhibitor development. We overexpressed a 41.9 kDa active recombinant endonuclease in Escherichia coli and designed a nicking assay using carboxyfluorescein and quencher-linked ssDNA as substrates. The optimal temperature and pH of the endonuclease were 37℃ and pH 7, respectively. Curcumin, bisdemethoxycurcumin, demethoxycurcumin, linoleic acid, tannic acid, and α-tocopherol inhibited CPV-2 NS1 endonuclease with IC50 values of 0.29 to 8.03 µM. The extracted turmeric, yerba mate, and sesame cake suppressed CPV-2 NS1 endonuclease with IC50 values of 1.48, 7.09, and 52.67 ㎍/ml, respectively. The binding affinity between curcumin, the strongest inhibitor, and CPV-2 NS1 endonuclease by molecular docking was -6.4 kcal/mol. Curcumin inhibited CPV-2 NS1 endonuclease via numerous hydrophobic interactions and two hydrogen bonds with Lys97 and Pro111 in the allosteric site. These results suggest that adding curcuminoids, linoleic acid, tannic acid, α-tocopherol, extracted turmeric, sesame cake, and yerba to the diet could prevent CPV-2 infection.

The Role of Curcuma Species as Functional Food Ingredients

  • Subarnas Anas;Apoteker Sidik
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.99-101
    • /
    • 2004
  • An important aspect of indigenous medicine is the ability of traditional societis to manipulate the environment for their own benefit, for example for their health care. In Indonesia, this indigenous medicine is called Jamu. Jamu mostly consists of a mixture of herbals of the genus Curcuma, Zingiberaceae. There are 19 species of curcuma grown in Indonesia. Eleven of them are popular in the jamu preparations. Ethnopharma-cological surveys have shown that 50% of these species are used for post partum protection, dismenorrhea, 30% are used for the treatment of stomache and as cosmetics, 20% for the treatment of various diseases such as fever, worms, asthma, etc. Chemical studies show that they contain curcuminoids, volatile oils, flavonoids, starch, and resinous substance. Pharmacological studies of extracts and isolated bioactive compounds have shown that they have a broad pharmacological activity such as antibacterial, antifungal, anti-inflammatory, choleretic, antihepatotoxic, antitumor, antioxidant, and antihyperlipidemic activity.

  • PDF