• Title/Summary/Keyword: cumulative exposure

Search Result 200, Processing Time 0.024 seconds

Maximum Likelihood Estimation of Lifetime Distribution under Stress Bounded Ramp Tests: The Case Where Stress Loaded from Use Condition (스트레스 한계가 있는 램프시험하에서 신뢰수명분포의 최우추정: 사용조건에서부터 스트레스를 가하는 경우)

  • 전영록
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • This paper considers maximum likelihood (ML) estimation of lifetime distribution under stress bounded ramp tests in which the stress is increased linearly from used condition stress to the stress u, pp.r bound. The following assumptions are used: exponential lifetime distribution under a constant stress, an inverse power law relationship between stress and mean of exponential lifetime distribution, and a cumulative exposure model for the effect of changing stress. Likelihood equations for the parameters involved in the model and asymptotic distribution of the estimators are obtained, and a numerical example is given.

  • PDF

Significance of brain magnetic resonance imaging(MRI) in the assessment of occupational manganese exposure (직업적 망간 폭로에 있어서 뇌자기공명영상의 의의)

  • 정해관
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.14-30
    • /
    • 1998
  • Manganese is an essential element in the body. It is mainly deposited in the liver and to a lesser degree in the basal ganglia of the brain and eliminated through the bile duct. Rapid turnover of managanese in the body makes it difficult to evaluate the manganese exposure in workers, esecially in those with irregular or intermittent exposure, like welders. Therefore, conventional biomarkers, including blood and urine manganese can provide only a limited information about the long-tern or cumulative exposure to manganese. Introduction of magnetic resonance imaging (MRI) made a progress in the assessment of manganese exposure in the medical conditions related to manganese accumulation, e. g. hepatic failure and long-term total parenteral nutrition. Manganese shortens spin-lattice(T1) relaxation time on MRI due to its paramagnetic property, resulting in high signal intensity (HSI) on T1-weighted image(T1W1) of MRI. Manganese deposition in the brain, therefore, can be visualizedas an HSI in the globus pallidus, the substantia nigra, the putamen and the pituitary. clinical and epidemiologic studies regarding the MRI findings in the cases of occupational and non-occupational manganese exposure were reviewed. relationships between HSI on T1W1 of MRI and age, gender, occupational manganese exposure, and neurological dysfunction were analysed. Relationships betwen biological exposure indices and HSI on MRE werealso reviewed. Literatures were reviewed to establish the relationships between HSI, Manganese deposition in the brain, pathologic findings, and neurological dysfunction. HSI on T1W1 of MRI reflects regional manganese deposition in the brain. This relationship enables an estimation of regional manganese deposition in the brain by analysing MR signal intensity. Manganese deposition in the brain can induce a neuronal loss in the basal ganglia but functional abnormality is supposed to be related to the cumulative exposure of manganese in the brain, use of brain MRI for the assessment of exposure in a group of workers seems to be hardly rationalized, while ti can be a useful adjunct for the evaluation of manganese exposure int he cases with suspected manganese-related health problems.

  • PDF

An External Dose Assessment of Worker during RadWaste Treatment Facility Decommissioning

  • Chae, San;Park, Seungkook;Park, Jinho;Min, Sujung;Kim, Jongjin;Lee, Jinwoo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Background: Kori unit #1 is permanently shut down after a 40-year lifetime. The Nuclear Safety and Security Commission recommends establishing initial decommissioning plans for all nuclear and radwaste treatment facilities. Therefore, the Korea Atomic Energy Research Institute (KAERI) must establish an initial and final decommissioning plan for radwaste-treatment facilities. Radiation safety assessment, which constitutes one chapter of the decommissioning plan, is important for establishing a decommissioning schedule, a strategy, and cost. It is also a critical issue for the government and public to understand. Materials and Methods: This study provides a method for assessing external radiation dose to workers during decommissioning. An external dose is calculated following each exposure scenario, decommissioning strategy, and working schedule. In this study, exposure dose is evaluated using the deterministic method. Physical characterization of the facility is obtained by both direct measurement and analysis of the drawings, and radiological characterization is analyzed using the annual report of KAERI, which measures the ambient dose every month. Results and Discussion: External doses are calculated at each stage of a decommissioning strategy and found to increase with each successive stage. The maximum external dose was evaluated to be 397.06 man-mSv when working in liquid-waste storage. To satisfy the regulations, working period and manpower must be managed. In this study, average and cumulative exposure doses were calculated for three cases, and the average exposure dose was found to be about 17 mSv/yr in all the cases. Conclusion: For the three cases presented, the average exposure dose is well below the annual maximum effective dose restriction imposed by the international and domestic regulations. Working period and manpower greatly affect the cost and entire decommissioning plan; hence, the chosen option must take account of these factors with due consideration of worker safety.

Numerical Calculations of IASCC Test Worker Exposure using Process Simulations (공정 시뮬레이션을 이용한 조사유기응력부식균열 시험 작업자 피폭량의 전산 해석에 관한 연구)

  • Chang, Kyu-Ho;Kim, Hae-Woong;Kim, Chang-Kyu;Park, Kwang-Soo;Kwak, Dae-In
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.803-811
    • /
    • 2021
  • In this study, the exposure amount of IASCC test worker was evaluated by applying the process simulation technology. Using DELMIA Version 5, a commercial process simulation code, IASCC test facility, hot cells, and workers were prepared, and IASCC test activities were implemented, and the cumulative exposure of workers passing through the dose-distributed space could be evaluated through user coding. In order to simulate behavior of workers, human manikins with a degree of freedom of 200 or more imitating the human musculoskeletal system were applied. In order to calculate the worker's exposure, the coordinates, start time, and retention period for each posture were extracted by accessing the sub-information of the human manikin task, and the cumulative exposure was calculated by multiplying the spatial dose value by the posture retention time. The spatial dose for the exposure evaluation was calculated using MCNP6 Version 1.0, and the calculated spatial dose was embedded into the process simulation domain. As a result of comparing and analyzing the results of exposure evaluation by process simulation and typical exposure evaluation, the annual exposure to daily test work in the regular entrance was predicted at similar levels, 0.388 mSv/year and 1.334 mSv/year, respectively. Exposure assessment was also performed on special tasks performed in areas with high spatial doses, and tasks with high exposure could be easily identified, and work improvement plans could be derived intuitively through human manikin posture and spatial dose visualization of the tasks.

Semi-Quantitative Exposure Assessment of Occupational Exposure to Wood Dust and Nasopharyngeal Cancer Risk

  • Ekpanyaskul, Chatchai;Sangrajrang, Suleeporn;Ekburanawat, Wiwat;Brennan, Paul;Mannetje, Andrea;Thetkathuek, Anamai;Saejiw, Nutjaree;Ruangsuwan, Tassanu;Boffetta, Paolo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4339-4345
    • /
    • 2015
  • Occupational exposure to wood dust is one cause of nasopharyngeal cancer (NPC); however, assessing this exposure remains problematic. Therefore, the objective of this study was to develop a semi-quantitative exposure assessment method and then utilize it to evaluate the association between occupational exposure to wood dust and the development of NPC. In addition, variations in risk by histology were examined. A case-control study was conducted with 327 newly diagnosed cases of NPC at the National Cancer Institute and regional cancer centers in Thailand with 1:1 controls matched for age, gender and geographical residence. Occupational information was obtained through personal interviews. The potential probability, frequency and intensity of exposure to wood dust were assessed on a job-by-job basis by experienced experts. Analysis was performed by conditional logistic regression and presented in odds ratio (ORs) estimates and 95% confidence intervals (CI). Overall, a non significant relationship between occupational wood dust exposure and NPC risk for all subjects was observed (ORs=1.61, 95%CI 0.99-2.59); however, the risk became significant when analyses focused on types 2 and 3 of NPC (ORs=1.62, 95%CI 1.03-2.74). The significant association was stronger for those exposed to wood dust for > 10 year (ORs=2.26, 95%CI 1.10-4.63), for those with first-time exposure at age > 25 year (ORs=2.07, 95%CI 1.08-3.94), and for those who had a high cumulative exposure (ORs=2.17, 95%CI 1.03-4.58) when compared with those considered unexposed. In conclusion, wood dust is likely to be associated with an increased risk of type 2 or 3 NPC in the Thai population. The results of this study show that semi-quantitative exposure assessment is suitable for occupational exposure assessment in a case control study and complements the information from self-reporting.

Characterization of Photovoltaic Module Encapsulant According to UV Irradiation Dose (자외선 조사량에 따른 태양전지 모듈 봉지재의 특성 분석)

  • Lee, Song-Eun;Bae, Joon-Hak;Shin, Jae-Won;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • The photovoltaic modules installed in the actual field are affected by various external environments and the electrical performance output value is generally lowered compared to initial output value. The most of photovoltaic modules consists of low iron glass, encapsulant (EVA), back sheet, frame and junction box assembly based on the solar cells. In this paper, the characteristics of encapsulant which is an important constituent material of photovoltaic module were verified by maximum power determination, electro luminescence images, yellowness index measurement, and gel content measurement after ultraviolet (UV) irradiation exposure. The most commonly installed 72 cells crystalline photovoltaic modules were tested after various UV exposure of 0, 15, 30, and $60kWh/m^2$ and compared with the reference module. After UV exposure of $15kWh/m^2$, which is the current international test condition, a small amount of change was observed in yellowness index and electroluminescence, while a gell content rapidly increased. At a cumulative dose of $60kWh/m^2$, which will be a new international test condition in the near future, however, the yellowness index increased sharply and showed the greatest output power drop.

Development of Predictive Model for Annual Mean Radon Concentration for Assessment of Annual Effective dose of Radon Exposure (라돈 노출 유효선량 평가를 위한 연간 평균 라돈 농도 예측모델 개발)

  • Lee, Cheolmin;Kang, Daeyong;Koh, Sangbaek;Cho, Yongseog;Lee, Dajeong;Lee, Sulbee
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1107-1114
    • /
    • 2016
  • This research, sponsored by the Korean Ministry of Environment in 2014, was the first epidemiological study in Korea that investigated the health impact assessment of radon exposure. Its purpose was to construct a model that calculated the annual mean cumulative radon exposure concentrations, so that reliable conclusions could be drawn from environment-control group research. Radon causes chronic lung cancer. Therefore, the long-term measurement of radon exposure concentration, over one year, is needed in order to develop a health impact assessment for radon. Hence, based on the seasonal correction model suggested by Pinel et al.(1995), a predictive model of annual mean radon concentration was developed using the year-long seasonal measurement data from the National Institute of Environmental Research, the Korea Institute of Nuclear Safety, the Hanyang University Outdoor Radon Concentration Observatory, and the results from a 3-month (one season) survey, which is the official test method for radon measurement designated by the Korean Ministry of Environment. In addition, a model for evaluating the effective annual dose for radon was developed, using dosimetric methods. The model took into account the predictive model for annual mean radon concentrations and the activity characteristics of the residents.

Cancer Risk from Medical Radiation Procedures for Coronary Artery Disease: A Nationwide Population-based Cohort Study

  • Hung, Mao-Chin;Hwang, Jeng-Jong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2783-2787
    • /
    • 2013
  • To assess the risk of cancer incidence after medical radiation exposure for coronary artery disease (CAD), a retrospective cohort study was conducted based on Taiwan's National Health Insurance Research Database (NHIRD). Patients with CAD were identified according to the International Classification of Diseases code, 9th Revision, Clinical Modification (ICD-9-CM), and their records of medical radiation procedures were collected from 1997 to 2010. A total of 18,697 subjects with radiation exposure from cardiac imaging or therapeutic procedures for CAD were enrolled, and 19,109 subjects receiving cardiac diagnostic procedures without radiation were adopted as the control group. The distributions of age and gender were similar between the two populations. Cancer risks were evaluated by age-adjusted incidence rate ratio (aIRR) and association with cumulative exposure were further evaluated with relative risks by Poisson regression analysis. A total of 954 and 885 subjects with various types of cancers in both cohorts after following up for over 10 years were found, with incidences of 409.8 and 388.0 per 100,000 person-years, respectively. The risk of breast cancer (aIRR=1.85, 95% confidence interval: 1.14-3.00) was significantly elevated in the exposed female subjects, but no significant cancer risk was found in the exposed males. In addition, cancer risks of the breast and lung were increased with the exposure level. The study suggests that radiation exposure from cardiac imaging or therapeutic procedures for CAD may be associated with the increased risk of breast and lung cancers in CAD patients.

Radiation Dose Distribution of a Surgeon and Medical Staff during Orthopedic Balloon Kyphoplasty in Japan

  • Ono, Koji;Kumasawa, Takafumi;Shimatani, Keiichi;Kanou, Masatoshi;Yamaguchi, Ichiro;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • Background: The present study investigated the radiation dose distribution of balloon kyphoplasty (BKP) among surgeons and medical staff, and this is the first research to observe such exposure in Japan. Materials and Methods: The study subjects were an orthopedic surgeon (n = 1) and surgical staff (n = 9) who intervened in BKP surgery performed at the National Hospital Organization Disaster Medical Center (Tokyo, Japan) between March 2019 and October 2019. Only disposable protective gloves (0.022 mmPb equivalent thickness or less) and trunk protectors were used, and no protective glasses or thyroid drapes were used. Results and Discussion: The surgery time per vertebral body was 36.2 minutes, and the fluoroscopic time was 6.8 minutes. The average exposure dose per vertebral body was 1.46 mSv for the finger (70 ㎛ dose equivalent), 0.24 mSv for the lens of the eye (3 mm dose equivalent), 0.11 mSv for the neck (10 mm dose equivalent), and 0.03 mSv for the chest (10 mm dose equivalent) under the protective suit.The estimated cumulative radiation exposure dose of 23 cases of BKP was calculated to be 50.37 mSv for the fingers, 8.27 mSv for the lens, 3.91 mSv for the neck, and 1.15 mSv for the chest. Conclusion: It is important to know the exposure dose of orthopedic surgeons, implement measures for exposure reduction, and verify the safety of daily use of radiation during surgery and examination.

The Relationship between Pesticide Exposure and Central Nervous System Symptoms (농약 노출과 중추신경 증상과의 관련성)

  • Kwon, Young-Jun;Kang, Tae-Sun;Kim, Kyung-Ran;Lee, Kyung-Sook;Ju, Young-Su;Song, Jae-Chul
    • Journal of agricultural medicine and community health
    • /
    • v.29 no.2
    • /
    • pp.265-285
    • /
    • 2004
  • Objectives: The acute toxic effects of pesticide are well known. Concern has also been expressed that long-term exposure may result in damage to the central nervous system. This study was conducted to test the hypothesis that central nervous system symptoms might occur due to pesticide exposure. Methods: In a cross-sectional study, first, cumulative exposure index (CEI) was estimated. Neurologic symptoms (Q-16 questionnaire) for 541 farmers (exposed to pesticides) were compared with 119 non-exposed persons in spraying season nine rural areas in Korea. Results: The pesticides poisoning rates for last 3 months were 67.2% for orchard farmers, 55.3%for dry field farmers, and 20.5% for husbandry farmers, respectively, showing significant difference (p<0.001). Compared with non-exposure group, exposure groups (especially, orchard farmers) reported significantly more neurologic symptoms and had a higher overall neurological symptoms score (p<0.001). Factors related to the positive neurological symptoms (answers "yes" to six or more of Q-16 questionnaire) adjusted for age, sex, education level, smoking and alcohol drinking were type of farming (OR 3.08, 95% CI 1.50-6.30 in orchard farmers vs non-exposure group), CEI (OR 2.75, 95% CI 1.12-6.78 in Q3 vs Q1), past poisoning (OR 1.97, 95% CI 1.21-3.20 vs normal), current mild poisoning (OR 3.03, 9500 CI 1.47-6.22 vs normal) and current moderate poisoning (OR 6.34, 95% CI 3.03-13.25 vs normal), respectively. Conclusions: These results suggest that long-term exposure to pesticides appears to be associated with subtle changes in the central nervous system.

  • PDF