• Title/Summary/Keyword: cultivation processes

Search Result 132, Processing Time 0.032 seconds

Bioprocess Strategies and Recovery Processes in Gibberellic Acid Fermentation

  • Shukla, Ruchi;Srivastava, Ashok K.;Chand, Subhash
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.269-278
    • /
    • 2003
  • Gibberellic acid (GA$_3$) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungus Gibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA$_3$. This review summarizes the problems of GA$_3$ fermentation such as production of co-secondary metabolites along with GA$_3$, substrate inhibition and degradation of GA$_3$ to biologically inert compound gibberellenic acid, which limits the yield of GA$_3$ in the fermentation medium. These problems can be overcome by various bioprocessing strategies e.g. two - stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and / or extractive fermentation with or without cell recycle / retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA$_3$ isolation is also a challenge and procedures available for the same have been critically evaluated.

On-line Monitoring and Control of Substrate Concentrations in Biological Processes by Flow Injection Analysis Systems

  • Rhee, Jong-Il;Adnan Ritzka;Thomas Scheper
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.156-165
    • /
    • 2004
  • Concentrations of substrates, glucose, and ammionia in biological processes have been on-line monitored by using glucose-flow injection (FIA) and ammonia-FIA systems. Based on the on-line monitored data the concentrations of substrates have been controlled by an on-off controller, a PID controller, and a neural network (NN) based controller. A simulation program has been developed to test the control quality of each controller and to estimate the control parameters. The on-off controller often produced high oscillations at the set point due to its low robustness. The control quality of a PID controller could have been improved by a high analysis frequency and by a short residence time of sample in a FIA system. A NN-based controller with 3 layers has been developed, and a 3(input)-2(hidden)-1(output) network structure has been found to be optimal for the NN-based controller. The performance of the three controllers has been tested in a simulated process as well as in a cultivation process of Saccharomyces cerevisiae, and the performance has also been compared to simulation results. The NN-based controller with the 3-2-1 network structure was robust and stable against some disturbances, such as a sudden injection of distilled water into a biological process.

Control of Ammonium Concentration in Biological Processes Using a Flow Injection Analysis Technique (흐름주입분석기술을 이용한 생물공정에서 암모니아 농도의 제어)

  • 이종일
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.452-458
    • /
    • 2001
  • Concentrations of ammonia in biological processes were controlled by PID controllers and also neural network based controllers (NN controllers). A flow injection analysis system has been to on-line monitor the concentrations of ammonia in a bioreactor. The effect of the analysis error and the residence time of samples on the control performance were studied. The optimal neural network structure was investigated by using computer simulation and found to be a 3(input layer)-2(hidden layer)-1(output layer). The NN controller is often time consuming, but it has advantage over the PID controller in sensitivity. The 3-2-1 NN controller has been applied to control the ammonia concentrations in a simulated bioprocess and also a real cultivation process of yeast. The good control performance showed that the 3-2-1 NN controller based on the FIA system can be used to control the concentration of substrates in biological processes very well.

  • PDF

Studies of Duvatrienediol in Tobacco Leaf (Nicotiana tabacum L.) (잎담배중 Duvatrienediol에 관한 연구)

  • 지상운;안기영;이문수;박영수;정찬선
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.2
    • /
    • pp.159-167
    • /
    • 1992
  • It would be clear that the constituents of the leaf surface lipid is ye비 important as an evaluation index of tobacco leaf quality since the quality of tobacco specific aroma with leaf species depends on the contents of the lipid and the strength of the aroma is determined by the amounts of the lipid secreted. For the reason, a rapid and peproducible method to quantify DVT, which is a kind of lipid, has been studied. The biosynthesis procedure of DVT in leaf growing processes, and the volatile or decompositional characters of DVT in leaf drying processes were also discussed. In consequence, it might be possible to get the data available to the cultivation of better tobacco leaf and the manufacture of cigarettes with better aroma and taste. The results obtained from this study are as follows. 1. Chloroform/dichloromethane solvent was better than chloroform alone for DVT extraction. The extraction yields of the leaf surface lipid were about 5% 2. The extractives with dichloromethane were treated by silylation with BSTPa and the quantitative analysis of DVT was carried out using SE -54 fused silica capillary column. It was found that rapid and reproducible data could be obtained from these methods. 3. In flue - cured tobacco species, DVT contents were $30.3\mu\textrm{g}/cm^2$ in the beginning stage of leaf drying processes and $12.1\mu\textrm{g}/cm^2$ corresponded to 30% levels of the beginning stage, in the end stage. 4. DVT contents in Burley mere 2 times as large as those in fluecured tobacco. DVT in the upper stalk position of leaf was 3 times larger than that in the lower stalk position. 5. DVT of tobacco leaves was decomposed by $SO_2$ gas or the sun light. The decomposition rate was largest in the sample used methanol as a extraction solvent.

  • PDF

Fiber optic 산소센서를 이용한 생물공정의 모니터링

  • Lee, Jong-Il;Comte, Andreas;Hung, Lam Tuan;Kim, Jun-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.569-571
    • /
    • 2000
  • A fiber optic oxygen sensor has been employed to monitor the concentrations of dissolved oxygen in a bioreactor. The characteristics of fiber optic oxygen sensor was investigated, e.g. the dependency of agitation rate on the oxygen measurement and also the dependence of temperature on the performance of fiber optic oxygen sensor etc. We have also applied to monitor the concentrations of dissoved oxygen in real cultivation processes by using the fiber optic oxygens sensor. The fiber optic oxygen sensor can be applied to measure the concentration of metabolites by immobilizing some enzymes, e.g. glucose oxidase and also employed for the environmental technology.

  • PDF

Maximization of cell growth and polysaccharide production from Agaricus blazei by fed-batch cultivation

  • Hwang, Jeong-Min;Seo, Jeong-Sik;Gwon, Myeong-Sang;Choe, Jeong-U;Han, Jin-Su;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.283-286
    • /
    • 2000
  • In order to maximize the cell growth and the polysaccharide production in Agaricus blazei, two kinds of fed-batch fermentation processes were performed with varying the feeding medium compositions and the feeding process. The relationship between dissolved oxygen and polysaccharide production in batch fermentation was applied to fed-batch fermentation. The biomasss concentration was 18.2 g/L and the polysaccharide production was 10.4 g/L.

  • PDF

Cyanobacterial Taxonomy: Current Problems and Prospects for the Integration of Traditional and Molecular Approaches

  • Komarek, Jiri
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.349-375
    • /
    • 2006
  • The application of modern ecological, ultrastructural and molecular methods, aided by the cultivation of numerous cyanobacterial morphotypes, has substantially changed our knowledge of these organisms. It has led to major advances in cyanobacterial taxonomy and criteria for their phylogenetic classification. Molecular data provide basic criteria for cyanobacterial taxonomy; however, a correct phylogenetic system cannot be constructed without combining genetic data with knowledge from the previous 150 years research of cyanobacterial diversity. Thus, studies of morphological variation in nature, and modern morphological, ultrastructural, ecophysiological and biochemical characters need to be combined in a “polyphasic” approach. Taxonomic concepts for generic and infrageneric ranks are re-evaluated in light of combined phenotypic and molecular criteria. Despite their usefulness in experimental studies, the limitations of using strains from culture collections for systematic and nomenclatural purposes is highlighted. The need for a continual revision of strain identification and proper nomenclatural practice associated with either the bacteriological or botanical codes is emphasized. Recent advances in taxonomy are highlighted in the context of prospects for understanding cyanobacterial diversity from natural habitats, and the evolutionary and adaptational processes that cyanobacteria undergo.

Electrochemical Sensor for Detecting Underwater Biofilm Using Cyclicvoltammetry (순환전압전류법을 이용한 수중 생물막 측정 전기화학센서)

  • Hwang, Byeong-Jun;Lee, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.374-378
    • /
    • 2012
  • Biofouling causes many problem in industrial processes, medical health industries, water utilities and our daily life. So detecting formation of biofilm on the surface of medical appliance, water pipe and industrial utility is highly important to prevent the problem caused by biofouling. In this study, we suggest an electrochemical sensor for detecting biofilm. We fabricated the electrochemical sensor in MEMS process and cultivated two different kinds of Pseudomonas aeruginosa RpoN type and Wild type on the surface of electrochemical sensor. Each group of Pseudomonas aeruginosa was cultivated according to the hours of 2, 4, 6, 8, 12 and 24. Then we investigated changes in degree of biofilm cultivation using cyclic voltammetry. As a result, it was observed that peak of the cyclic voltammetry curve is increased according as the biofilm growth on the surface of electrochemical sensor. Also we can discern between Pseudomonas aeruginosa RpoN type and Wild type.

Carbon dioxide fixation by microalgae photosynthesis (미세조류에 의한 $CO_2$ 고정화 연구)

  • 성기돈;이진석;이준표;김미선;박순철
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.82-87
    • /
    • 1995
  • Carbon dioxide fixation by microalgae has several advantages such as no requirements for the pretreatment over phycal and/or chemical $CO_2$ fixation processes. Chlorella sp. HA-1, fresh algae. and Chlorococcum littorale. marine algae, were used to do $CO_2$ fixation work. The experimental parameters were light intensity and $CO_2$ concentration. Chlorella sp. HA-1 has the maximum growth rate at 8 Klux and 10% $CO_2$ concentration. Chlorococcum littorale showed the maximum growth at similar conditions. The results indicated the feasibility of the Chlorella HA-1 and Chlorococcum littorale for mass cultivation using flue gas.

  • PDF

Study on Cell Growth Characteristics with Culture Medium Components by Using MABOOMSTM (마이크로플레이트 기반 생물반응기 시스템(MABOOMSTM)을 이용한 발효배지 성분의 미생물 성장 특성 연구)

  • Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.31-35
    • /
    • 2013
  • In this work a $MABOOMS^{TM}$ has been employed to cultivate microorganisms and investigated the effects of culture medium components on cell growth. A 24-well microplate coated with 4-divided fluorescent sensing membranes was used to monitor the dissolved oxygen, pH and cell concentration during cultivations. Fluorescence intensity for dissolved oxygen or solution pH and reflectance for cell concentration was online monitored by using the $MABOOMS^{TM}$. The online monitoring results showed the effects of culture medium components on cell growth in cultivation processes very well.