• Title/Summary/Keyword: cucurbit crops

Search Result 14, Processing Time 0.027 seconds

Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphidborne yellows virus Infecting Cucumis Species in Korea

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.

Phylogenetic Analysis of Cucurbit Chlorotic Yellows Virus from Melon in 2020 in Chungbuk, Korea (2020년 충북지역 멜론에서 발생한 Cucurbit Chlorotic Yellows Virus의 계통분석)

  • Taemin Jin;Hae-Ryun Kwak;Hong-Soo Choi;Byeongjin Cha;Jong-Woo Han;Mikyeong Kim
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.52-59
    • /
    • 2023
  • Cucurbit chlorotic yellows virus (CCYV) is a plant virus that causes damage to cucurbit crops such as watermelon and cucumber, and is transmitted by an insect vector known as the whitefly. Since CCYV was first detected on cucumber in Chungbuk in 2018, it has been reported in other areas including Gyeongsang in Korea. In 2020, we performed field surveys of yellowing diseases in the greenhouses growing melon and watermelon in Chungbuk (Jincheon and Eumseong). Reverse transcription-polymerase chain reaction analysis of 79 collected samples including melon, watermelon, and weeds resulted in detection of CCYV in 4 samples: Three samples were singly infected with CCYV and one samples was mixed infected with CCYV, Cucurbit aphid borne yellows virus, and Watermelon mosaic virus. The complete genome sequences of the four collected CCYV melon isolates (ES 1-ES 4) were determined and genetically compared with those of previously reported CCYV isolates retrieved from GenBank. Phylogenetic analyses of RNA 1 and 2 sequences revealed that four ES isolates were clustered in one group and closely related to the CCYV isolates from China. The analysis also revealed very low genetic diversity among the CCYV ES isolates. In general, CCYV isolates showed little genetic diversity, regardless of host or geographic origins. CCYV has the potential to pose a serious threat to melon, watermelon, and cucumber production in Korea. Further studies are needed to examine the pathogenicity and transmissibility of CCYV in weeds and other cucurbits including watermelon.

Cucurbit Powdery Mildew: First Insights for the Identification of the Causal Agent and Screening for Resistance of Squash Genotypes (Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.) in Mendoza, Argentina

  • Caligiore-Gei, Pablo Fernando;Della-Gaspera, Pedro;Benitez, Eliana;Tarnowski, Christian
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.296-303
    • /
    • 2022
  • The cucurbit powdery mildew (CPM) caused by different fungal species is a major concern for cucurbit crops around the world. In Argentina CPM constitutes the most common and damaging disease for cucurbits, especially for squash crops (Cucurbita moschata). The present study displays initial insights into the knowledge of the disease in western Argentina, including the determination of the prevalent species causing CPM, as well as the evaluation of the resistance of squash cultivars and breeding lines. Fungal colonies were isolated from samples collected in Mendoza province, Argentina. A field trial was also performed to assess the resistance of five squash accessions, including commercial cultivars and breeding lines. The severity of CPM was analyzed and epidemiological models were built based on empirical data. The morphological determinations and analysis with specific molecular markers confirmed Podosphaera xanthi as the prevalent causal agent of CPM in Mendoza. The results od the field trial showed differences in the resistance trait among the squash accessions. The advanced breeding line BL717/1 showed promising results as source of CPM resistance for the future development of open pollinated resistant cultivars, a crucial tool for an integrative control of the disease.

Occurrence of Two Tobamovirus Diseases in Cucurbits and Control Measures in Korea

  • Park, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.243-248
    • /
    • 2001
  • Two Tobamoviruses, Cucumber green mottle mosaic virus (CGMMV) and Zucchini green mottle mosaic virus (ZGMMV), occurred in Korea in 463 ha in 1998, 33.9 ha in 1999, and 44.2 ha in 2000. CGMMV was detected in watermelon, cucumber, oriental melon, and melon, whereas ZGMMV was mainly detected in zucchini squash. Thirty-six CGMMV isolates wee classified into three types by analysis of single strand cDNA conformational polymorphism (SSCP) of the coat protein gene. In a comparison of serological relationships among CGMMV, ZGMMV, and Kyuri green mottle mosaic virus (KGMMV), the three tobamoviruses specifically reacted with each homologous antibody in the double-antibody sandwich enzyme-linked immunosorbent assay and rapid imunofilter paper assay (RIPA), although ZGMMV and KGMMV were slightly biologcially similar. In a survey of the three tobamoviruses in cucurbitgrowing field in Korea by RIPA, CGMMV and ZGMMV were detected but KGMMV was not found in commercially growing cucurbit crops so far. Seed contamination ratio of CGMMV in bottle gourd seeds tested was 84%, while seed trasmission ratio from the virus-contaminated seeds was 2.0%. Soil transmission ratio was 0-3.5% in fields naturally infested with CGMMV or ZGMMV. Control measures of the virus diseases are roguing and sanitation. These suggest that it is important to rogue the first infected crops, which include the seed and soil, especially early in the season. This may be practicable to control the diseases because CGMMV and ZGMMV have a narrow host range restricted to cucurbitaceous crops.

  • PDF

Occurrence of major diseases in pesticide-free cultivated tomato and cucurbit in Jeollabuk-do, South Korea (전북지역 토마토와 박과류 무농약재배지의 주요 병해 발생 현황)

  • Kim, Ju Hee;Choi, Min Kyung;Moon, Hyung Cheol;Chon, Hyong Gwon
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.486-495
    • /
    • 2020
  • We surveyed disease outbreak status that has recently become a problem in organic tomatoes and cucurbit in plastic greenhouse that were grown without spraying pesticides during the plastic greenhouse growing season of 2015 to 2019. It was found that the incidence of leaf mold, tomato spotted wilt virus, and tomato chlorosis virus disease was severe in tomato, and disease incidence of powdery mildew and zucchini yellow mosaic virus were severe in Cucurbit. The disease outbreak was found to be faster and more severe in crops grown in pesticide-free cultivation plastic greenhouses than in plastic greenhouses that are cultivated in general using pesticides. In particular, the occurrence of viral diseases mediated by thrips and aphids was found to be severely damaged. Therefore, in order to produce good organic products, it is important to effectively control pests, and in order to minimize the damage caused by disease, sanitation and physical blocking, and comprehensively utilize organic materials or microorganisms to prevent them.

Simultaneous Detection of Three Tobamoviruses in Cucurbits by Rapid Immunofilter Paper Assay

  • Park, Gug-Seoun;Kim, Jae-Hyun;Chung, Bong-Nam;Kim, Hyun-Ran;Park, Yong-Mun
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.106-109
    • /
    • 2001
  • A multi-rapid immunofilter paper assay (multi-RIPA) system was prepared for simultaneous diagnosis of three Tobamoviruses, Cucumber green mottle mosaic virus (CGMMV), Kyuri green mottle mosaic virus (KGMMV), and Zucchini green mottle mosaic virus (ZGMMV) in cucurbitaceous crops. Each of these viruses was specifically detected by the multi-RIPA from cucumber, watermelon, zucchini, and bottle gourd inoculated with the three Tobamoviruses singly or in combination. The three viruses could infect cucumber, watermelon, and bottle gourd ; however, CGMMV could not infect zucchini as the latex-coated CGMMV antibody showed a negative reaction in the multi-RIPA of the virus-infected plant extract. When the minimum detection level of multi-RIPA was compared with that of double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) using CGMMV, the latter was 10 times more sensitive than the former. The detection limit of the multi-RIPA for the purified CGMMV was 50 ng/ml. In a survey of the threeviruses in cucurbits growing in commercial fields in 1999 and 2000, CGMMV was detected in watermelon and cucumber, and ZGMMV was detected only in zucchini growing in plastic houses at the suburbs of Chonju, Korea. However, KGMMV was not found in the commercially growing cucurbit crops in our study, The results suggest that the multi-RIPA can be a simple, rapid, specific and convenient tool to detect simultaneously the Tobamoviruses.

  • PDF

Natural Occurrence of Tomato leaf curl New Delhi virus in Iranian Cucurbit Crops

  • Yazdani-Khameneh, Sara;Aboutorabi, Samaneh;Shoori, Majid;Aghazadeh, Azin;Jahanshahi, Parastoo;Golnaraghi, Alireza;Maleki, Mojdeh
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.201-208
    • /
    • 2016
  • The main areas for field-grown vegetable production in Iran were surveyed during the years of 2012-2014 to determine the occurrence of begomoviruses infecting these crops. A total of 787 leaf samples were collected from vegetables and some other host plants showing virus-like symptoms and tested by an enzymelinked immunosorbent assay (ELISA) using polyclonal antibodies produced against Tomato yellow leaf curl virus (TYLCV). According to the ELISA results, 81 samples (10.3%) positively reacted with the virus antibodies. Begomovirus infections were confirmed by polymerase chain reaction (PCR) using previously described TYLCV-specific primer pair TYLCV-Sar/TYLCV-Isr or universal primer pair Begomo-F/Begomo-R. The PCR tests using the primer pair TYLCV-Sar/TYLCV-Isr resulted in the amplification of the expected fragments of ca. 0.67-kb in size for ELISA-positive samples tested from alfalfa, pepper, spinach and tomato plants, confirming the presence of TYLCV. For one melon sample, having a week reaction in ELISA and no reaction in PCR using TYLCV-specific primers, the PCR reaction using the primer pair Begomo-F/Begomo-R resulted in the amplification fragments of the expected size of ca. 2.8 kb. The nucleotide sequences of the DNA amplicons derived from the isolate, Kz-Me198, were determined and compared with other sequences available in GenBank. BLASTN analysis confirmed the begomovirus infection of the sample and showed 99% identities with Tomato leaf curl New Delhi virus (ToLCNDV); phylogenetic analysis supported the results of the database searches. This study reports the natural occurrence of TYLCV in different hosts in Iran. Our results also reveal the emergence of ToLCNDV in Iranian cucurbit crops.

Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops (박과작물의 유연관계 분석을 통한 수박 EST-SSR 마커의 종간 적용성 검정)

  • Kim, Hyeogjun;Yeo, Sang-Seok;Han, Dong-Yeop;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.93-105
    • /
    • 2015
  • This study was performed to analyze genetic relationships of the four major cucurbitaceous crops including watermelon, melon, cucumber, and squash/pumpkin. Among 120 EST-SSR primer sets selected from the International Cucurbit Genomics Initiative (ICuGI) database, PCR was successful for 51 (49.17%) primer sets and 49 (40.8%) primer sets showed polymorphisms among eight Cucurbitaceae accessions. A total of 382 allele-specific PCR bands were produced by 49 EST-SSR primers from 24 Cucurbitaceae accessions and used for analysis of pairwise similarity and dendrogram construction. Assessment of the genetic relationships resulted in similarity indexes ranging from 0.01 to 0.85. In the dendrogram, 24 Cucurbitaceae accessions were classified into two major groups (Clade I and II) and 8 subgroups. Clade I comprised two subgroups, Clade I-1 for watermelon accessions [I-1a and I-1b-2: three wild-type watermelons (Citrullus lanatus var. citroides Mats. & Nakai), I-1b-1: six watermelon cultivars (Citrullus lanatus var. vulgaris S chrad.)] a nd C lade I -2 for melon and cucumber accessions [I-2a-1 : 4 melon cultivars(Cucumis melo var. cantalupensis Naudin.), I-2a-2: oriental melon cultivars (Cucumis melo var. conomon Makino.), and I-2b: five cucumber cultivars (Cucumis sativus L.)]. Squash and pumpkin accessions composed Clade II {II-1: two squash/ pumpkin cultivars [Cucurbita moschata (Duch. ex Lam.)/Duch. & Poir. and Cucurbita maxima Duch.] and II-2: two squash/pumpkin cultivars, Cucurbita pepo L./Cucurbita ficifolia Bouche.}. These results were in accordance with previously reported classification of Cucurbitaceae species, indicating that watermelon EST-SSRs show a high level of marker transferability and should be useful for genetic study in other cucurbit crops.

Pathogenicity of Didymella bryoniae on the Seedlings of Cucurbits (오이류 유묘에 대한 덩굴마름병균의 병원성)

  • Lee Du Hyung
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.173-177
    • /
    • 1985
  • The objective of the study is to determine differences between cucurbits in the pathogenicity of Didymella bryoniae isolated from the naturally infected seeds of cucumber and pumpkin. Primary seedling infection of cucumber(Cucumis sativus L.), oriental melon(Cucumis melo var. makuwa Makino), pumpkin(Cucurbita pepo L.) and watermelon (Citrullus vulgaris Shrad.) occurred on the radicle, hypocotyl and cotyledons and symptoms on each crop were very similar. Infection of the radicle generally caused pre-emergence rot, while infection on the hypocotyl and cotyledons provided further inoculum for infection of the first true leaves and the stem. In cross inoculation tests, all isolates of D. bryoniae could infect cucumber, oriental melon, pumpkin and watermelon at different growth stages and there were not much differences in pathogenicity or susceptibility between isolates of the pathogen and crops tested. The susceptibility of cucumber and pumpkin was markedly influenced by prevailing humid conditions.

  • PDF

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.