• Title/Summary/Keyword: cucumis melo

Search Result 181, Processing Time 0.028 seconds

Occurrence of Fuligo gyrosa Causing Slime Mold of Oriental Melon

  • Kim, Wan-Gyu;Choi, Hyo-Won;Hong, Sung-Kee;Lee, Young-Kee;Lee, Su-Heon
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.238-239
    • /
    • 2009
  • Recently, a severe slime mold infestation affected oriental melon plants in fields in Chilgok county, Gyeongbuk province, Korea. Specimens were collected from the fields and examined for identification. A species of Myxomycetes, Fuligo gyrosa, was identified based on its morphological characteristics. This is the first report that F. gyrosa causes slime mold of oriental melon.

서양뒤영벌(Bombus terrestris)과 서양종꿀벌(Apis mellifera)의 시설참외(Cucumis melo var makuwa) 화분매개 활동 비교

  • 이상범;배태웅;윤형주;김삼은;심하식;김영수;이기열
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.04a
    • /
    • pp.63-63
    • /
    • 2003
  • 서양뒤영벌(Bombus terrestis)과 꿀벌(Apis melltfera)의 시설참외에서 화분 매개특성을 조사한 결과, 봉종별 방화활동에서 서양뒤영벌 일벌은 10시, 서양뒤영벌 수벌과 꿀벌은 12시에 방화활동 정점에 도달하였다. 암꽃 선호시간은 서양뒤영벌 일벌, 꿀벌 그리고 서양뒤영벌 수벌은 각각 10시, 12시 그리고 14-16시에 가장 높았다. 봉군 투입 후 서양뒤영벌 일벌과 꿀벌은 각각 2일과 5일째부터 정상적인 방화활동을 시작하여 24일간 정상적인 활동을 하였으나 서양뒤영벌 수벌은 3차례의 심한 기복이 있는 불안정한 방화활동을 보였다. (중략)

  • PDF

Occurrence of Cercospora Leaf Spot Caused by Cercospora cf. flagellaris on Melon in Korea

  • Park, Mi-Jeong;Back, Chang-Gi;Park, Jong-Han
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.418-422
    • /
    • 2020
  • In 2016, a cercosporoid fungus was found from leaf spot symptoms on melon in Korea. The fungus isolated from the plant was identified based on morphological characteristics and sequence analyses of five genes (ITS rDNA, translation elongation factor 1-α, actin, calmodulin, and histone H3). The fungal isolate was found to be pathogenic to melon. The results confirm that the fungus associated with leaf spot on melon was Cercospora cf. flagellaris. This is the first report of Cercospora cf. flagellaris causing Cercospora leaf spot on melon in Korea.

Co-Occurrence of Two Phylogenetic Clades of Pseudoperonospora cubensis, the Causal Agent of Downy Mildew Disease, on Oriental Pickling Melon

  • Lee, Dong Jae;Lee, Jae Sung;Choi, Young-Joon
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.188-195
    • /
    • 2021
  • The genus Pseudoperonospora, an obligate biotrophic group of Oomycota, causes the most destructive foliar downy mildew disease on many economically important crops and wild plants. A previously unreported disease by Pseudoperonospora was found on oriental pickling melon (Cucumis melo var. conomon) in Korea, which is a minor crop cultivated in the temperate climate zone of East Asia, including China, Korea, and Japan. Based on molecular phylogenetic and morphological analyses, the causal agent was identified as Pseudoperonospora cubensis, and its pathogenicity has been proven. Importantly, two phylogenetic clades of P. cubensis, harboring probably two distinct species, were detected within the same plots, suggesting simultaneous coexistence of the two clades. This is the first report of P. cubensis causing downy mildew on oriental pickling melon in Korea, and the confirmation of presence of two phylogenetic clades of this pathogen in Korea. Given the high incidence of P. cubensis and high susceptibility of oriental pickling melon to this disease, phytosanitary measures, including rapid diagnosis and effective control management, are urgently required.

Changes in Quality of Muskmelon (Cucumis melo L.) during Storage at Different Temperatures (머스크멜론의 저장온도별 저장 중 품질변화)

  • Youn, Aye-Ree;Kwon, Ki-Hyun;Kim, Byeong-Sam;Kim, Sang-Hee;Noh, Bong-Soo;Cha, Hwan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.251-257
    • /
    • 2009
  • The effects of temperature variations during storage on the quality characteristics of muskmelons (Cucumis melo L.) were investigated. In samples stored at $4^{\circ}C$ and $10^{\circ}C$, weight losses were almost 2.9- and 3.4-fold higher, respectively, compared to samples stored at $0^{\circ}C$. Soluble solids slightly increased except in the samples stored at $10^{\circ}C$, but acidity decreased over the entire storage period. Firmness decreased with storage time, but the samples stored at $0^{\circ}C$ had a lesser decrease in firmness than the samples stored at other temperatures. Water loss from the muskmelon stalk was most inhibited, and vitamin C content was maintained for the longest period, with storage at $4^{\circ}C$. Mineral contents (Ca, Na, Fe, Mg, K) were best maintained in muskmelon samples stored at $10^{\circ}C$ for 15 days, but levels had decreased by 30 days. Microbiological quality was not appreciably different at any storage temperature at 18 days; however, samples stored at $4^{\circ}C$ and $10^{\circ}C$ had deteriorated by 25 days. The results of sensory evaluations indicated that taste was best retained in samples stored at $10^{\circ}C$ for 15 days, although changes in taste were evident at all storage temperatures. When the samples were stored over 22 days at $10^{\circ}C$, retention of texture and overall acceptability were more inferior compared to samples stored at $0^{\circ}C$ and $4^{\circ}C$. These results suggest that storage at $4^{\circ}C$ can be used to reduce deterioration in muskmelons without significant loss of their quality attributes.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

Growth, Quality and Irrigation Requirements of Melon Cultivars in Hydroponic Cultivation Using Coir Substrate (코이어 배지를 이용한 멜론 수경재배 시 품종별 생육, 품질 및 급액 요구량)

  • Lim, Mi Young;Roh, Mi Young;Jeong, Ho Jeong;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.188-195
    • /
    • 2021
  • This study was conducted to investigate the growth and quality characteristics of melon (Cucumis melo L.) cultivars and the irrigation requirements for cultivars. In our previous study in 2019, twelve melon cultivars including 'Dalgona' were examined for their cultivar characteristics under the same irrigation condition for all cultivars, and sorted into several groups based on different growth condition; for the internode length (from 0 to 20th node), leaf area, and fruit weight, 'Kingstar' belonged to the largest group, 'Worldstar' the middle group, and 'Dalgona' the smallest group. After analyzing the results of the previous experiment, 'Dalgona', 'Worldstar', 'Kingstar', and 'Rubyball' were selected as test cultivars for the growth group in 2020, and irrigated according to different irrigation levels for each cultivar. The control of the irrigation volume for each melon cultivar by monitoring the drainage rate during the cultivation periods showed that all four cultivars required a similar amount of irrigation in the 'early growth' stage where crops grew at about the same rate. From 'flowering time', however, the change in irrigation requirements showed a similar tendency for 'Worldstar' and 'Kingstar' and for 'Rubyball' and 'Dalgona' respectively. A sudden change in each irrigation volume was observed from the fruit set; 'Dalgona' began first to decline and 'Rubyball' was second, followed by 'Worldstar' and 'Kingstar'. In conclusion, the irrigation volume was the largest in 'Kingstar', followed by 'Worldstar', 'Rubyball', and 'Dalgona' in the same order as the growing amount of plant length, leaf area, and fruit weight. Therefore, it is necessary to control exactly the irrigation volume by reflecting the unique growth characteristics of each cultivar for the production of high-quality fruit in melon hydroponics, and especially to use great care when different cultivars are cultivated together.

Soil EC and Yield and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) as affected by Fertigation (참외의 관비재배가 토양 EC, 참외의 수량 및 품질에 미치는 영향)

  • Jun, Ha Joon;Shin, Yong Seup;Suh, Jun Kyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • Experiments were conducted to investigate the effect of fertigation (fertilizer-added irrigation) on soil EC (electrical conductivity), nitrogen and calcium content in soil, vine growth and fruit yield of oriental melon (Cucumis melo L. var. makuwa Mak.). Soil EC was increased with the frequency of fertigation (Yamazaki's solution for melon, 900 L/1,000 plants, each time) up to $0.8dS{\cdot}m^{-1}$ as compared to that of conventional irrigation ($0.2dS{\cdot}m^{-1}$). Ca content in soil also increased in fertigation fields. Vine dry weigh (20 days after planting) was significantly increased in fertigation plot. Markedly increases in marketable fruit yield and lower rate of off-shape fruit were recorded with the increase in fertigation frequency. Mean fruit weight and soluble solids contents ($^0Brix$) in fruit were not affected by fertigation. Fresh weight loss during storage was significantly higher in fruits harvested from 2 times fertigation (09:00 and 18:00) plot than conventional irrigation and the 1 time fertigation ones.

Prediction of Consumer Acceptance of Oriental Melon based on Physicochemical and Sensory Characteristics (이화학적·관능적 품질 특성에 기반한 참외의 소비자 기호도 예측)

  • Lee, Da Uhm;Bae, Jeong Mi;Lim, Jeong Ho;Choi, Jeong Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • We investigated the physicochemical and sensory characteristics of oriental melon (Cucumis melo L.) to provide a consumer-oriented quality index. Oriental melon fruits were harvested at 20, 25, or 30 days after fruit set (DAFS), and each group was sorted by size (small, medium, and large). Fruits harvested at 25 and 30 DAFS had higher CIE $a^*$ and $b^*$ values, higher soluble solids content (SSC), and lower CIE $L^*$, firmness, and titratable acidity (TA) values than fruits harvested at 20 DAFS. Fruits harvested at 25 and 30 DAFS scored more highly for overall acceptance. A significant correlation was found between physicochemical characteristics and overall acceptance. In the delayed-harvest sample, increased sweetness and yellowness, and decreased sensorial texture were associated with an increase in overall acceptance. In principal component analysis, F1 and F2 explained 62.16% and 17.91% of the total variance (80.07%), respectively. Regression analysis of overall acceptance and F1 gave a coefficient of determination ($r^2$) of 0.87. Our results show that consideration of the physicochemical characteristics (CIE value, SSC, pH, SSC/TA ratio, and firmness) and sensory characteristics (yellowness, placenta area condition, oriental melon odor, sweetness, oriental melon flavor, texture, and off odor) of oriental melon in this way can be used as quality indices to predict consumer acceptance.

Some Characteristics of Melon necrotic spot virus-Me and Resistance Screen to the Virus in Melon Cultivars (멜론괴저반점바이러스-Me의 몇 가지 특성과 멜론 품종의 저항성 선발)

  • Choi, Gug-Seoun;Cho, Jeom-Deog;Chung, Bong-Nam;Cho, In-Sook;Kwon, Soon-Bae
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.254-258
    • /
    • 2010
  • Melon necrotic spot virus (MNSV) is a very destructive disease to melon (Cucumis melo) plants. A MNSV was isolated from melon leaf showing necrotic spot symptoms at the plastic house in Naju, Korea in 2009. The isolate, designated as MNSV-Me, was identified and characterized by biological responses on several host plants, immuno captured RT-PCR and partial nucleotide sequencings of the genome. To evaluate MNSV-Me resistance in melon, thirty-five melon cultivars were mechanically inoculated on the cotyledon of the seedlings with the virus. MNSV-Me produced necrotic spots on the inoculated leaves of the all melon cultivars tested. Twenty-five cultivars were susceptible to the virus and they showed systemic necrotic spots on the leaves and/or necrosis longer than 3 cm in length on the stems within about forty days after inoculation. Five cultivars gave moderate resistance, no symptoms on the upper leaves but necrosis on the stem shorter than 3 cm in length. In an evaluation of MNSV-Me resistance in melon cultivars, 'Elstitan', 'Elsluxery', 'Betalichihage', 'Betalichi' and 'Womderfulhagae 1st' were found to have resistance by showing only faint necrosis on their stems.