• 제목/요약/키워드: crystal proteins

검색결과 132건 처리시간 0.027초

Two groups of S-layer proteins, SLP1s and SLP2s, in Bacillus thuringiensis co-exist in the S-layer and in parasporal inclusions

  • Zhou, Zhou;Peng, Donghai;Zheng, Jinshui;Guo, Gang;Tian, Longjun;Yu, Ziniu;Sun, Ming
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.323-328
    • /
    • 2011
  • We screened four B. thuringiensis strains whose parasporal inclusions contained the S-layer protein (SLP), and cloned two slp genes from each strain. Phylogenetic analysis indicated these SLPs could be divided into two groups, SLP1s and SLP2s. To confirm whether SLPs were present in the S-layer or as a parasporal inclusion, strains CTC and BMB1152 were chosen for further study. Western blots with isolated S-layer proteins from strains CTC and BMB1152 in the vegetative phase showed that SLP1s and SLP2s were constituents of the S-layer. Immunofluorescence utilizing spore-inclusion mixtures of strains CTC and BMB1152 in the sporulation phase showed that SLP1s and SLP2s were also constituents of parasporal inclusions. When heterogeneously expressed in the crystal negative strain BMB171, four SLPs from strains CTC and BMB1152 could also form parasporal inclusions. This temporal and spatial expression is not an occasional phenomenon but ubiquitous in B. thuringiensis strains.

Isolation and Characterization of Two Mosquitocidal Bacillus thuringien- sis Strains Belonging to subsp. kurstaki and subsp. aizawai

  • Roh, Jong-Yul;Li, Ming-Shun;Chang, Jin-Hee;Shim, Hee-Jin;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제3권1호
    • /
    • pp.19-23
    • /
    • 2001
  • Two B. thuringiensis strains, which possess mosquitocidal activities, were isolated from Korean soil samples and named K-1205-1 and K-1381-1. Serological studies indicated that K-1205-1 and K-1381-1 belonged to B. thuringiensis subsp. kurstaki (H3a3b3c) and subsp. aizawai (H7), respectively. K-1205-1 produced typical bipyramidal parasporal inclusions, but K-1381-1 produced irregular bipyramidal shape. Total plasmid DNA patterns analysis shewed that K-1205-1 and K- 1381-1 were different from their reference strains, subsp. kurstaki and subsp. aizawai, respectively, in high molecules, whereas their crystal protein patterns showed no difference. The cry gene contents of K-1205-1 and K-1381-1 were identical with those of the reference strains. Mosquitocidal activities of crystal proteins produced by K-1205-1 and K-1381-1 were significantly high by about 40-50 folds at $LC_50$ when compared to those of subsp. kurstaki and subsp. aizawai. Finally, in southern blot analysis using cry1A-type specific probe, K-1205-1 and K-1381-1 had different bands from subsp. kurstaki and subsp. aizawai, respectively. In conclusion, our results suggest that K-1205-1 and K-1381-1 appear to be new moquitocidal B. thuringiensis strains isolated from Korean soil.

  • PDF

Development of Olfactory Biosensor Using Olfactory Receptor Proteins Expressed in E. coli

  • 성종환;고휘진;박태현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.639-642
    • /
    • 2003
  • 본 연구는 후각 수용 단백질인 ODR10를 GST와 Histidine tag를 각각 N 말단과 C 말단에 삽입한 후 두 가지의 발현 벡터에 넣어 대장균에서 발현시켰다. 부분 정제된 단백질을 QCM의 수정진동자에 코팅한 후 여러 종류의 냄새 분자와의 상호 작용을 관찰하였다. 발현양은 적었지만 QCM실험 결과 발현된 단백질이 diacetyl과 반응한다는 것을 알 수 있었다. ODR10 단백질과 diacetyl의 결합 정도는 다른 냄새 분자와 비교했을 때 $5{\sim}10$배 정도 차이가 났으며 이를 통해 후각 수용 단백질을 발현시킨 대장균 세포들을 후각센서를 개발하는데 사용할 수 있다는 것을 알 수 있었다. 또한 현재까지는 1000가지 이상 존재한다고 알려진 후각 수용 단백질들이 어떤 냄새 분자와 특이적인 결합성을 가지는지 조사하기 위해서는 복잡하고 시간이 오래 걸리는 실험을 해야 했었지만, 대장균에서 발현시키는 시스템을 통해 경제적이고 효율적으로 조사를 할 수 있게 되었다.

  • PDF

Cry11Aa 유전자로 형질전환된 Synechocystis PCC6803의 작은빨간집모기와 중국얼룩날개모기 유충에 대한 살충효과 (Mosquito Larvicidal Activity of Synechocystis PCC6803 Transformed with the cry11Aa gene to Culex tritaeniorhynchus and Anopheles sinensis)

  • 이대원
    • 한국응용곤충학회지
    • /
    • 제43권1호
    • /
    • pp.35-41
    • /
    • 2004
  • Bacillus thuringiensis는 포자형성기 동안에 위생해충이나 농업해충에 독성을 보이는 내독소 단백질을 생성한다. 내독소 단백질의 모기 유충 방제효과를 높이기 위해, 광합성에 관여하는 psbA promoter로 모기 살충성 cry11Aa유전자를 발현하는 pSyn4D벡터를 제작하고, 모기 유충이 먹이로 이용하는 Synechocystis PCC6803에 형질 전환시켰다. 형질 전환체들은 kanamycin이 포함된 배지에서 선발되었으며, 정상적인 생물검정을 통해 형질 전환체 Tr2C를 선발하였다. cry11Aa 유전자는 형질전환체의 genomic DNA에 안정적으로 결합되어 있는 것을 PCR을 이용하여 확인하였다. 형질전환체 Tr2C는 약 72-kDa크기의 Cry11Aa 단백질을 발현하였으며, 작은빨간집모기(Culex tritaeniorhynchus) 3령 유충과 중국얼룩날개모기(Anopheles sinensis) 3령 유충에 75%가 넘는 살충력을 보였다. 모기 유충에 대한 형질전환체의 반수치사시간(LT$_{50}$)은 작은빨간집모기 유충과 중국얼룩날개모기 유충에 대해 각각 2.1일과 0.7일이었다. 이상의 결과들은 형질전환체 Tr2C가 모기 유충방제에 유용하게 이용될 수 있음을 보여준다.

Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond

  • Bang, Injin;Choi, Hee-Jung
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.105-111
    • /
    • 2015
  • The beta2-adrenergic receptor (${\beta}2AR$) belongs to the G protein coupled receptor (GPCR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ${\beta}2AR$ in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ${\beta}2AR$ is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ${\beta}2AR$. In this review, structural features of inactive and active states of ${\beta}2AR$, the interaction of ${\beta}2AR$ with heterotrimeric G protein, and the comparison with ${\beta}1AR$ will be discussed.

Crystal structure of unphosphorylated Spo0F from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier

  • Lee, Chang Woo;Park, Sun-Ha;Jeong, Chang Sook;Lee, Chang Sup;Hong, Jong Wook;Park, Hyun Ho;Park, Hyun;Park, HaJeung;Lee, Jun Hyuck
    • Biodesign
    • /
    • 제6권4호
    • /
    • pp.84-91
    • /
    • 2018
  • Spo0F is a response regulator that modulates sporulation, undergoes phosphorylation for phosphorelay signal transduction, and interacts with various regulatory proteins; however, the mechanisms through which phosphorylation induces structural changes and regulates interactions with binding partners remain unclear. Here, we determined the unphosphorylated crystal structure of Spo0F from the psychrophilic bacterium Paenisporosarcina sp. TG-14 (PaSpo0F) and established a phosphorylation-state structural model. We found that PaSpo0F underwent structural changes (Lys54 and Lys102) by phosphorylation and generated new interactions (Lys102/Gln10 and Lys54/Glu84) to stabilize the ${\beta}4/{\alpha}4$ and ${\beta}1/{\alpha}1$ loop structures, which are important target-protein binding sites. Analysis of Bacillus subtilis Spo0 variants revealed movement by BsSpo0F Thr82 and Tyr84 residues following interaction with BsSpo0B, providing insight into the movement of corresponding residues in PaSpo0F (Thr80 and Tyr82), with further analysis of BsSpo0F/BsRapH interaction revealing alterations in the ${\beta}4/{\alpha}4$ loop region. These results suggest that phosphorylation-induced structural rearrangement might be essential for PaSpo0F activation and expand the understanding of Spo0F-specific activation mechanisms during sporulation.

A Highly Pathogenic Strain of Bacillus thuringiensis serovar kurstaki in Lepidopteran Pests

  • Kati, Hatice;Sezen, Kazim;Nalcacioglu, Remziye;Demirbag, Zihni
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.553-557
    • /
    • 2007
  • In order to detect and identify the most toxic Bacillus thuringiensis strains against pests, we isolated a B. thuringiensis strain (Bn1) from Balaninus nucum (Coleoptera: Curculionidae), the most damaging hazelnut pest. Bn1 was characterized via morphological, biochemical, and molecular techniques. The isolate was serotyped, and the results showed that Bn1 was the B. thuringiensis serovar, kurstaki (H3abc). The scanning electron microscopy indicated that Bn1 has crystals with cubic and bipyramidal shapes. The Polymerase Chain Reactions (PCRs) revealed the presence of the cry1 and cry2 genes. The presence of Cry1 and Cry2 proteins in the Bn1 isolate was confirmed via SDS-PAGE, at approximately 130 kDa and 65 kDa, respectively. The bioassays conducted to determine the insecticidal activity of the Bn1 isolate were conducted with four distinct insects, using spore-crystal mixtures. We noted that Bn1 has higher toxicity as compared with the standard B. thuringiensis subsp. kurstaki (HD-1). The highest observed mortality was 90% against Malacosoma neustria and Lymantria dispar larvae. Our results show that the B. thuringiensis isolate (Bn1) may prove valuable as a significant microbial control agent against lepidopteran pests.

Impact of the Isolation Source on the Biofilm Formation Characteristics of Bacillus cereus

  • Hussain, Mohammad Shakhawat;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.77-86
    • /
    • 2018
  • The human pathogen and food spoiler Bacillus cereus can form biofilms that act as a persistent source of contamination, which is of public health concern. This study aimed to understand how the source of isolation might affect the behavior of biofilm formation. Biofilm formation abilities of 56 strains of B. cereus isolated from different environments, including human food poisoning, farm, and food, were determined. Crystal violet assay results revealed significant (p < 0.05) differences in biofilm formation abilities among the strains isolated from different sources only at an early stage of incubation. However, strain origin showed no impact on later stage of biofilm formation. Next, correlation of the group of isolates on the basis of their biofilm-forming abilities with the number of sessile cells, sporulation, and extracellular polymeric substance (EPS) formation was determined. The number of sessile cells and spores in biofilms was greatly influenced by the groups of isolates that formed dense, moderate, and weak biofilms. The contribution of extracellular DNA and/or proteins to EPS formation was also positively correlated with biofilm formation abilities. Our results that the source of isolation had significant impact on biofilm formation might provide important information to develop strategies to control B. cereus biofilm formation.

식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝 (Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis)

  • 이형환;황성희;박유신
    • 한국미생물·생명공학회지
    • /
    • 제18권6호
    • /
    • pp.647-652
    • /
    • 1990
  • Bacillus thuringiensis subsp. kurstaki HD1의 내 독소생산과 내독소단백질 유전자의 클로닝에 관한 연구를 하였다. 상기 균주는 아포생성기간 중에 이중피라미드형의 내독소를 생산하였고, 크리는 약 $2.9\times 1.0 \mu m$이었다. 상기 균주는 약 10개의 플라수미드 DNA를 가지고 있었으며, 플라스미드의 분자량의 범위는 2.1에서 80kilobases였다. 플라스미드 73kb, BamHI 절단 29Kb DNA 단편과 PstI 절단 7.9Kb DNA는 Probe DNA와 혼성화되었다. PstI 7.9Kb DNA를 추출하여 운반체인 pBR322 운반체의 PstI 절단부위에 삽입하여 클로닝한 후에 E.coli HB101 균주에 형질전환하였으며, 이 클로운을 pKL-20-1로 명명했고 이 형질전환체는 Bombyxmori 유충을 치사시키는 독소물질을 생산하였다.

  • PDF

사람 티로시나제의 3차원 구조 상동 모델링 (Comparative modeling of human tyrosinase - An important target for developing skin whitening agents)

  • 최종근;서주원
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2012년도 춘계학술논문집 1부
    • /
    • pp.182-186
    • /
    • 2012
  • human tyrosinase (hTyr) catalyzes first and the rate limiting step in the synthesis of polymerized pigment, melanin which determines skin, hair and eye colors. Mutation of hTyr often brings about decrease of melanin production and further albinism. Meanwhile, a number of cosmetic companies providing skincare products for woman in Asia-Pacific region have tried to develop inhibitors to bright skin color for several decades. In this study, we built a 3D structure by comparative modeling technique based on the crystal structure of tyrosinase from bacillus megaterium as a template to serve structural information of hTyr. According to our model and sequence analysis of type 3 copper protein family proteins, two copper atoms of active site located deep inside are coordinated with six strictly conserved histidine residues coming from four-helix-bundle. Cavity which accommodates substrates was like funnel shape of which entrance was wide and expose to solvent. In addition, protein-substrate and protein-inhibitor complex were modeled with the guide of van der waals surface generated by in house software. Our model suggested that only phenol group or its analogs can fill the binding site near nuclear copper center because inside of binding site has narrow shape relatively. In conclusion, the results of this study may provide helpful information for designing and screening new anti-melanogensis agents.

  • PDF