• Title/Summary/Keyword: crystal cells

Search Result 467, Processing Time 0.025 seconds

Dual Domain Effect on a Rubbing Mura in a Fringe-Field Switching (FFS) Liquid Crystal Display

  • Oh, S.M.;Jeon, Y.M.;Lee, S.H.;Eom, T.Y.;KIM, H.Y.;LIM, Y.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.426-429
    • /
    • 2005
  • The fringe-field switching (FFS) mode associated with a transition from a homogenously aligned to twist deformation require rubbing process. In this devices, $1^o$ of misalignment in an azimuthal direction could cause voltage-dependent transmittance (V-T) to be different from that in a normal area and consequently results in a rubbing mura. According to our studies, the single domain FFS cells are much more sensitive to the rubbing mura than the dual domain FFS cell. Moreover, the FFS cells with negative LC are much more sensitive to the rubbing mura than the FFS cells with positive LC.

  • PDF

A Study on VHR and Residual DC Property in the IPS Cells (IPS셀의 전압보유율 및 잔류DC특성 연구)

  • 김향율;서대식;남상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.169-172
    • /
    • 2002
  • The voltage holding ratio(VHR) and the residual DC property in the in-plane switching (IPS) cells on a polyimide surface was studied. Several IPS cells which have different concentrations of cyano liquid crystals (LCs) were fabricated. We found that the VHR of the IPS cell was decreased with increasing concentration of cyano LCs. Also, the VHR of the IPS cell was increased with increasing specific resistivity of fluorine LCs. The residual DC voltage of the IPS cell by capacitance-voltage (C-V) hysteresis method was decreased with increasing concentration of cyano LCs. The residual DC property of the IPS cell on the rubbed PI surface can be improved by high polarity of cyano LC.

Fabrication and Characteristics of $Ta_2O_5/Al/SiO_2/p-Si$ MIS Solar Cells ($Ta_2O_5/Al/SiO_2/P-Si$ MIS형(形) 태양전지(太陽電池)의 제작(製作)과 특성(特性))

  • Noh, Kyung-Suk;Sohn, Yeon-Kyu
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.70-75
    • /
    • 1986
  • The fabrication procedure and characteristics of $Ta_2O_5/Al/SiO_2/p-Si$ MIS solar cells forming a fine grating pattern of aluminum evaporated on to p-type silicon crystal are discribed. The proper temperature for oxide growing of these cells was found to be about $450^{\circ}C$ for 20 minutes with oxygen flow. The conversion efficiency increased about 3% after $750{\AA}$ thickness of tantalium silica film spin on anti-reflective coating. The best results showed that $V_{oc}=0.545V,\;J_{sc}=34mA$ and F.F = 0.65, which represent that the conversion efficiency is 12%.

  • PDF

Optimization of $p^+$ seeding layer for thin film silicon solar cell by liquid phase epitaxy

  • Lee, Eun-Joo;Lee, Soo-Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.260-262
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\mu}m$ thickness on $p^+$ seeding layer. The cells with $p^+$ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is 12.95%, with $V_{oc}=633mV,\;J_{sc}=26.5mA/cm^2$, FF = 77.15%. The $p^+$ seeding layer of the cell is $20{\mu}m$ thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

Synthesis of Nanocrystalline TiO2 by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Han, Sang-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1495-1498
    • /
    • 2008
  • $TiO_2$ nanopowders were synthesized by new sol-gel combustion hybrid method using acetylene black as a fuel. The dried gels exhibited autocatalytic combustion behaviour. $TiO_2$ nanopowders with an anatase structure and a narrow size distribution were obtained at 400-600 ${^{\circ}C}$. Their crystal structures were examined by powder Xray diffraction (XRD) and their morphology and crystal size were investigated by scanning electron microscopy (SEM). The crystal size of the nanopowders was found to be in the range of 15-20 nm. $TiO_2$ powders synthesized at 500 ${^{\circ}C}$ and 600 ${^{\circ}C}$ were applied to a dye solar cell. An efficiency of 5.2% for the conversion of solar energy to electricity ($J_{sc}$ = 11.79 mA/$cm^2$, $V_{oc}$ = 0.73 V, and FF = 0.58) was obtained for an AM 1.5 irradiation (100 mW/$cm^2$) using the $TiO_2$ nanopowder synthesized by the sol-gel combustion hybrid method at 500 ${^{\circ}C}$.

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim;Park, Il Han;Moon, Kyung Hwan;Kim, Dong Hwan;Jung, Seung Il;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.618-624
    • /
    • 2018
  • We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

Carbon nanotube effects on physical properties of liquid crystal and electro-optic characteristics of in-plane switching liquid crystal cell (카본나노튜브가 액정의 물성과 in-plane switching 셀의 전기광학 특성에 미치는 영향)

  • Jeon, Sang-Youn;Jeong, Seok-Jin;Jeong, Seok-Ho;Shin, Seung-Hwan;An, Kay-Hyok;Kang, Hoon;Kim, Kyoung-Jin;Lee, Seung-Hee;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.47-48
    • /
    • 2006
  • Carbon nanotubes (CNTs)-doped homogeneously aligned nematic liquid crystal (LC) cells driven by in-plane field were fabricated and their electro-optic characteristics were investigated. Effective cell retardation values in an absence of an electric field between doped and undoped LC were the same each other. In the presence of an electric field, however, measured effective cell retardation value was smaller in the CNT-doped cell than in the undoped cell so that the transmittance was slightly smaller in the CNT-doped cell than in the undoped cell. In addition, the CNT-doped cell exhibited slight increase in driving voltage and decrease in response time compared to the undoped cell. The CNT effects on electro-optic characteristics of the cell were discussed.

  • PDF

Non-blinking dendritic crystals from C-dot solution

  • Mewada, Ashmi;Vishwakarma, Ritesh;Patil, Bhushan;Phadke, Chinmay;Kalita, Golap;Sharon, Maheshwar;Sharon, Madhuri
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.211-214
    • /
    • 2015
  • Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60℃ and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.

Polycrystalline silicon films for solar cell application by solution growth (태양전지용 다결정 실리콘 박막의 용액 성장법에 관한 연구)

  • Soo Hong Lee;Martin A. Green
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.119-130
    • /
    • 1994
  • To deposit silicon on borosilicate glass substrates, 18 different substrate combinations were investigated because of the difficulty of direct deposition of silicon. Sucessful results were obtained from Al-and Mg-treated glass and furnace annealed sputtered silicon deposited glass substrates. A continuous silicon thin film on a large area substrates was obtained in the temperatures ranges from $420^{\circ}C to 520^{\circ}C$. These thin films might be applied to lower the cost of solar cells and solar cell modules.

  • PDF

Effects of Dispersed Carbon nanotubes on Electro-Optic Characteristics and Orientation of Liquid Crystal in the In-Plane Switching Cell

  • Baik, I.S.;Jeon, S.Y.;Choi, J.Y.;Lee, S.H.;Lee, J.Y.;An, K.H.;Lee, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.415-418
    • /
    • 2005
  • To understand effects of carbon nanotubes (CNTs) dispersed in nematic liquid crystal (NLC) on electro-optic characteristic and orientation of the LC, we CNT-doped homogeneously-aligned NLC cells driven by in-plane field have been fabricated. The CNTs were aligned with a LC director from the initial state to below critical ac field, whereas the CNTs disturbed the LC director field above critical ac field. We observed motional textures in the form of vertical stripes in the local area between electrodes, which were associated with a deformation of the LC director orientation. This indicates that CNTs start vibrating three dimensionally with translational motion. Further, the hysterisis studies of voltage-dependent transmittance under dc electric field show that the amount of residual dc, which is related to image sticking problem in liquid crystal displays, is greatly reduced due to ion trapping by CNTS while keeping operating voltage and response time about the same compared to the un-doped LC cell.

  • PDF