• Title/Summary/Keyword: crystal analysis

Search Result 2,011, Processing Time 0.037 seconds

Hydro/solvothermal synthesis, crystal structure, and thermal behaviour of piperazine-templated nickel(II) and cobalt(II) sulfates

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Two piperazine-templated metal sulfate complexes, $(C_4N_2H_{12})[Ni(H_2O)_6](SO_4)_2$, I and ($C_4N_2H_{12}$) $[Co(H_2O)_6](SO_4)_2$, II, have been synthesized by hydro/solvothermal reactions and their crystal structures analyzed by single crystal X-ray diffraction methods. Complex I crystallizes in the monoclinic system, $P2_1/n$ space group, a=12.920(3), b=10.616(2), $c=13.303(2){\AA}$, ${\beta}=114.09(1)^{\circ}$, Z=4, $R_1=0.030$ for 3683 reflections; II: monoclinic $P2_1/n$, a=12.906(3), b=10.711(2), $c=13.303(2){\AA}$, ${\beta}=114.10(2)^{\circ}$, Z=4, $R_1=0.032$ for 4010 reflections. The crystal structures of the piperazine-templated metal(II) sulfates demonstrate zero-dimensional compound constituted by diprotonated piperazine cations, metal(II) cations and sulfate anions. The structures of complex I and II are substantially isostructural to that of the previously reported our piperazine-templated copper(II) sulfate complex $(C_4N_2H_{12})[Cu(H_2O)_6](SO_4)_2$. The central metal(II) atoms are coordinated by six water molecules in the octahedral geometry. The crystal structures are stabilized by three-dimensional networks of the $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reactions of the complex I was analyzed to have three distinctive stages whereas the complex II proceed through several stages.

Measurement of Crystal Formation Using a Quartz Crystal Sensor

  • Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1659-1661
    • /
    • 2004
  • Measurement of supersaturation is important in crystallization processes, because it is one of key factors to control crystal size distribution and shape determining product quality. A monitoring system of the supersaturation using a quartz crystal sensor is applied to the supersaturation measurement. From the variation of resonant frequency, the beginning of the formation of salt crystal on the sensor surface is detected while the sensor is directly cooled down. The degree of supersaturation is computed from the solubility difference at the temperatures of the salt solution and the sensor. The performance of the propsed system of the supersaturation measurement is examined by applying the system to the crystallization of three different salt solutions. The experimental outcome compared with eye observation result and photographic analysis indicates that the proposed system is effective and useful to determine the supersaturation in the crystallization process. In addition, the microscopic monitoring of the initial stage crystallization is available with the sensor system.

  • PDF

A Study on Analysis for Bulk Forming of a Single Crystal Milli-Product (단결정 밀리 부품의 입체성형 해석에 관한 연구)

  • Lee Y. S.;Kim Y. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.245-249
    • /
    • 2001
  • This paper is concerned with numerical analyses for bulk forming of a single crystal milli-product, whose typical size ranges from a few hundreds ${\mu}m$ to a few mm. The numerical formulation invoked in this paper combines the crystal plasticity theory considering texture development and the ductile damage mechanics for growth of micro voids, since orientation development and growth of micro voids become the primary factors for bulk forming of milli-size products. As applications, milli-extrusion of a single crystal round bar and milli-rolling of a single crystal plate are simulated and the results are discussed in detail.

  • PDF

Technological Trend of Crystallization Research for Bioproduct Separation (Bioproduct 분리를 위한 결정화 연구 동향)

  • Kim, Woo-Sik;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.164-176
    • /
    • 2005
  • In bioengineering field, current academic trends and informations on crystallization technology for bioproduct separation were summarized. It is essential for utilizing the crystallization technology to understand the fundamental phenomena of crystallization of crystal nucleation, crystal growth, crystal agglomeration and population balance for the design of crystallizers. In general, the crystal nucleation that the crystalline solids occur from the solution is analyzed by Gibb's free energy change in the aspect of thermodynamics and in the present paper the crystal nucleation models based on the above thermodynamics are summarized by their key characteristics. The crystal growth and agglomeration, which have been studied over 50 years and are essential phenomena for separation technology, are reviewed from their basic concept to most leading edge trend of researches. In the material and population balances for the designs of crystallization separation process, the analysis of crystallizers is summarized. Thereon, the present review paper will academically contribute the understanding the crystallization phenomena and the design of the crystallization separation process.

EFFECT OF METAL CONTACT ON THE CZT DETECTOR PERFORMANCE

  • Park, Se-Hwan;Park, Hyung-Sik;Lee, Jae-Hyung;Kin, Han-Soo;Ha, Jang-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.65-68
    • /
    • 2009
  • Metal-semiconductor contact is very important for the operating property of semiconductor detector. $Cd_{0.96}$ $Zn_{0.04}$ Te semiconductor crystal was grown with Bridgman method, and the crystal was cut and polished. EPMA (Electron Probe Micro Analyzer) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) analysis were done to obtain the chemical composition and impurity of the crystal. Metal contact was deposited with thermal evaporator on both sides of the crystal. Detectors with Au/CZT/Au and In/CZT/Au structure were made, and I-V curve and the energy spectrum were measured with the detectors. It could be seen that the detector with the In/CZT/Au structure has superior property than the detector with Au/CZT/Au structure when the crystal resistivity was low. However, the metal contact structure effect becomes low when the crystal resistivity was high.

Crystal Structure and Characterization of a New Eight Coordinated Cadmium Complex

  • Hakimi, Mohammad;Moeini, Keyvan;Mardani, Zahra;Khorrami, Farzaneh
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.352-356
    • /
    • 2013
  • In this work, a new cadmium complex $[Cd(L)(CH_3COO)_2].2H_2O$ (1) with the ligand L, N,N'-bis(2-pyridinecarboxalidene)-1,2-cyclohexanediamine was prepared and identified by elemental analysis, FT-IR, Raman, $^1H$ NMR spectroscopy and single-crystal X-ray diffraction. The cadmium atom in the crystal structure of 1 has distorted triangular dodecahedral geometry by coordination of the four nitrogen atoms of L and four oxygen atoms of the two acetate ions. Two water molecules are also incorporated in the crystal network. The $O-H{\cdots}O$ hydrogen bonds present in the crystal structure of 1. In this work, three structural surveys including coordination numbers of the cadmium atom, coordination modes of L and resonance in pyridine-2-ylmethanimine-based compounds are presented.

A Computer Programming for the Analysis of Crystal Structures (결정 구조들의 해석을 위한 컴퓨터 프로그래밍)

  • Kim, Jin-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.872-878
    • /
    • 2000
  • In this paper a computer programming for the expression of nearest neighbor atoms in face-centered cubic (FCC) and body-centered cubic (BCC) crystals was suggested as one of the approaches to understand each of the crystal structure. By using this computer programming the distance values between a reference atom and the nearest neighbor atoms, and the numbers of the nearest neighbor atoms were calculated ane compared for the FCC and BCC crystals. In this algorithm, the positions of the atoms in a crystal were defined as two categories: the corner atoms and face- or body-centered atoms, and considered respectively. For the same order of nearest neighbor atoms except the second order ones the distance values form the reference atom were smaller in the FCC crystals than those in the BCC. Also, the numbers of he first and third nearest neighbor atoms n the FCC crystals were larger than those in the BCC. This difference was explained by the comparison of each atomic packing ratio of the FCC and BCC crystals. The algorithm used in this programming can also be expanded to the analysis of other crystal structures.

  • PDF

Prediction of Necking in Tensile Test using Crystal Plasticity Model and Damage Model (결정소성학 모델과 손상 모델을 이용한 박판소재의 네킹 예측)

  • Kim, Jong-Bong;Hong, Seung-Hyun;Yoon, Jeong-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.818-823
    • /
    • 2012
  • In order to predict necking behaviour of aluminium sheets, a crystal plasticity model is introduced in the finite element analysis of tensile test. Due to the computational limits of time and memory, only a small part of tensile specimen is subjected to the analysis. Grains having different orientations are subjected to numerical tensile tests and each grain is discretized by many elements. In order to predict the sudden drop of load carrying capacity after necking, a well-known Cockcroft-Latham damage model is introduced. The mismatch of grain orientation causes stress concentration at several points and damage is evolved at these points. This phenomenon is similar to void nucleation. In the same way, void growth and void coalescence behaviours are well predicted in the analysis. For the comparison of prediction capability of necking, same model is subjected to finite element analysis using uniform material properties of polycrystal with and without damage. As a result, it is shown that the crystal plasticity model can be used in prediction of necking and fracture behavior of materials accurately.