• Title/Summary/Keyword: crystal analysis

Search Result 2,013, Processing Time 0.032 seconds

Size Control and Dispersion Properties of Illite Clay by Physicochemical Treatment (물리화학적 처리에 의한 일라이트 점토광물의 입도조절 및 분산특성)

  • Lim, Jae Won;Jeong, Euigyung;Seo, Kyeong-won;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • In this study, illite was size-reduced using a wet-ball-milling treatment to improve its dispersion. Changes in illite particle size, size distribution, and dispersion characteristics after varying the treatment period were investigated. And the dispersion and dispersion stability of illite solution after 2 h wet ball milling treatment with different pH conditions were also evaluated. The illite particle size significantly decreased as the treatment time increased and the size reduction effect of wet ball milling deteriorated above 2 h treatment time. In addition, illite particle size was more evenly distributed as the treatment time increased. X-ray diffraction (XRD) analysis showed that no crystal structural changes of illite were induced, but the characteristic peak of illite the weaker due to the size reduction and exfoliation, as the treatment time increased. Zeta potential analysis showed that the illite dispersion improved, as the treatment time increased. The illite wet-ball-mill treated at pH 2 had the lowest dispersion stability. Illite dispersion and dispersion stability increased as pH increased, due to the increase in surface ionization. Hence, the results showed that as the treatment time increased, the illite particle size decreased, and dispersion and dispersion stability improved due to the increase in surface energy and repulsion force between particles.

Identification and confirmation of 14-3-3 ζ as a novel target of ginsenosides in brain tissues

  • Chen, Feiyan;Chen, Lin;Liang, Weifeng;Zhang, Zhengguang;Li, Jiao;Zheng, Wan;Zhu, Zhu;Zhu, Jiapeng;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.465-472
    • /
    • 2021
  • Background: Ginseng can help regulate brain excitability, promote learning and memory, and resist cerebral ischemia in the central nervous system. Ginsenosides are the major effective compounds of Ginseng, but their protein targets in the brain have not been determined. Methods: We screened proteins that interact with the main components of ginseng (ginsenosides) by affinity chromatography and identified the 14-3-3 ζ protein as a potential target of ginsenosides in brain tissues. Results: Biolayer interferometry (BLI) analysis showed that 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, exhibited the highest direct interaction to the 14-3-3 ζ protein. Subsequently, BLI kinetics analysis and isothermal titration calorimetry (ITC) assay showed that PPD specifically bound to the 14-3-3 ζ protein. The cocrystal structure of the 14-3-3 ζ protein-PPD complex showed that the main interactions occurred between the residues R56, R127, and Y128 of the 14-3-3 ζ protein and a portion of PPD. Moreover, mutating any of the above residues resulted in a significant decrease of affinity between PPD and the 14-3-3 ζ protein. Conclusion: Our results indicate the 14-3-3 ζ protein is the target of PPD, a ginsenoside metabolite. Crystallographic and mutagenesis studies suggest a direct interaction between PPD and the 14-3-3 ζ protein. This finding can help in the development of small-molecular compounds that bind to the 14-3-3 ζ protein on the basis of the structure of dammarane-type triterpenoid.

Effect of Heat-treatment Temperature on the Physical Properties of Iron Oxide Nanoparticles Synthesized by Using Permanent Magnet Scrap (영구자석 스크랩으로 합성한 산화철 나노입자의 물성에 미치는 열처리 온도의 영향)

  • Hong, Sung-Jei;Hong, Sang Hyeok;Jo, Ajin;Kim, Young-Sung;Kim, ByeongJun;Yang, Suwon;Lee, Jae-Yong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.110-116
    • /
    • 2022
  • In this study, iron oxide (FeOx) nanoparticles were synthesized using iron (Fe) by-products recovered from NdFeB permanent magnet scraps, and the effect of heat-treatment temperature on the physical properties of the FeOx nanoparticles was investigated. In order to prepare the FeOx nanoparticles, 2.0 M ammonia (NH4OH) solution was added to an iron by-product solution diluted to c.a. 10 wt% in D.I. water, which led to the precipitation of the iron oxide precursor. Then, the FeOx nanoparticles were synthesized by heat-treatment at 300 ℃, 400 ℃, 500 ℃ and 600 ℃. After that, the physical properties of the FeOx nanoparticles were investigated in order to understand the effect of the heat-treatment temperature. The results of the X-ray diffraction (XRD) analysis showed that the diffraction peak in accordance with the <104> direction increased as the heat-treatment increased, and a diffraction peak indicating the α-Fe2O3 crystal structure was detected at heat-treatment temperatures above 500 ℃. The BET specific surface area analysis revealed that the specific surface area decreased as the heat-treatment temperature increased to above 400 ℃. Observation with a high resolution transmission electron microscope (HRTEM) showed that rod-shaped nanoparticles were formed, and the size of the nanoparticles showed a tendency to increase as the heat-treatment temperature increased.

A study on the preparation and analysis of cordierite by sol-gel method (졸-겔법에 의한 코디어라이트 제조와 분석에 관한 연구)

  • Chun, Kyung Soo;Lee, Young Hwan
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.123-128
    • /
    • 2008
  • The golden turbid solution of cordierite precursor was obtained by using magnesium ethoxide in sol-gel method, while the clear solution of cordierite precursor was obtained when 5%-$Zr(OC_3H_7)_4$ solution was used in the sol-gel reaction. $SiO_2$ component was confirmed by infrared spectra showing $1045cm^{-1}$ and the stretching vibration of gelish $SiO_4$ showed $1140cm^{-1}$ and $940cm^{-1}$. The component of $Al_2O_3$ showed at $580cm^{-1}$ and network structure of $Al_2O_6$ showed at $680cm^{-1}$. The component of MgO was confirmed at $575cm^{-1}$ as the stretching vibration. X-ray diffraction analysis showed ${\mu}$-cordierite crystal was showed up at temperature above $1000^{\circ}C$ at the mole ratio of cordierite precursor and water (1:5). ${\mu}$-Cordierite and ${\alpha}$-cordierite were coexisted at $1050^{\circ}C$ for the mole ratio of cordierite precursor and ammonia (1:5) while ${\alpha}$-cordierite was only existed at $1100^{\circ}C$ for the same mole ratio as mentioned above.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Alice Springs Orogeny (ASO) Footprints Tracing in Fresh Rocks in Arunta Region, Central Australia, Using Uranium/Lead (U-Pb) Geochronology

  • Kouame Yao;Mohammed O. Idrees;Abdul-Lateef Balogun;Mohamed Barakat A. Gibril
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.817-830
    • /
    • 2023
  • This study investigates the age of the surficial rocks in the Arunta region using Uranium-Lead (U-Pb) geochronological dating. Rock samples were collected at four locations, Cattle-Water Pass (CP 1610), Gough Dam (GD 1622 and GD 1610), and London-Eye (LE 1601), within the Strangways Metamorphic Complex and crushed by selFragging. Subsequently, the zircon grains were imaged using Cathodoluminescence (CL) analysis and the U-Pb (uranium and lead) isotope ratios and the chrono-stratigraphy were measured. The imaged zircon revealed an anomalous heterogeneous crystal structure. Ellipses of the samples at locations GD1601, CP1610, and GD1622 fall below the intercept indicating the ages produced discordant patterns, whereas LE1601 intersects the Concordia curve at two points, implying the occurrence of an event of significant impact. For the rock sample at CP1610, the estimated mean age is 1742.2 ± 9.2 Ma with mean squared weighted deviation (MSWD) = 0.49 and probability of equivalence of 0.90; 1748 ± 15 Ma - MSWD = 1.02 and probability of equivalence of 0.40 for GD1622; and 1784.4 ± 9.1 Ma with MSWD of 1.09 and probability of equivalence of 0.37 for LE1601. But for samples at GD1601, two different age groups with different means occurred: 1) below the global mean (1792.2 ± 32 Ma) estimated at 1738.2 ± 14 Ma with MSWD of 0.109 and probability of equivalence of 0.95 and 2) above it with mean of 1838.22 ± 14 Ma, MSWD of 1.6 and probability of equivalence of 0.95. Analysis of the zircon grains has shown a discrepancy in the age range between 1700 Ma and 1800 Ma compared to the ASO dated to have occurred between 440 and 300 Ma. Moreover, apparent similarity in age of the core and rim means that the mineral crystallized relatively quickly without significant interruptions and effect on the isotopic system. This may have constraint the timing and extent of geological events that might have affected the mineral, such as metamorphism or hydrothermal alteration.

Effect of Pt as a Promoter in Decomposition of CH4 to Hydrogen over Pt(1)-Fe(30)/MCM-41 Catalyst (Pt(1)-Fe(30)/MCM-41 촉매상에서 수소 제조를 위한 메탄의 분해 반응에서 조촉매 Pt의 효과)

  • Ho Joon Seo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.674-678
    • /
    • 2023
  • The effect of Pt was investigated to the catalytic methane decomposition of CH4 to H2 over Pt(1)-Fe(30)/MCM-41 and Fe(30)/MCM-41 using a fixed bed flow reactor under atmosphere. The Fe2O3 and Pt crystal phase behavior of fresh Pt(1)-Fe(30)/MCM-41 were obtained via XRD analysis. SEM, EDS analysis, and mapping were performed to show the uniformed distribution of nano particles such as Fe, Pt, Si, O on the catalyst surface. XPS results showed O2-, O- species and metal ions such as Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ etc. When 1 wt% of Pt was added to Fe(30)/MCM-41, automic percentage of Fe2p increased from 13.39% to 16.14%, and Pt4f was 1.51%. The yield of hydrogen over Pt(1)-Fe(30)/MCM-41 was 3.2 times higher than Fe(30)/MCM-41. The spillover effect of H2 from Pt to Fe increased the reduction of Fe particles and moderate interaction of Fe, Pt and MCM-41 increased the uniform dispersion of fine nanoparticles on the catalyst surface, and improved hydrogen yield.

The effect of blasting and anodizing-combined treatment of implant surface on response of osteoblast-like cell (분사처리 후 양극산화 처리한 임플란트 표면이 골모 유사 세포의 반응에 미치는 영향)

  • Seo, Bo-Yong;Kim, Young-Min;Choi, Jae-Won;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo;Kim, Gyu-Cheon;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Purpose: The purpose of this study is to examine characteristics of implant surface with RBM and anodizing treatments, and to evaluate the responses of osteoblast-like cell (MG-63 cell). Materials and methods: Grade IV titanium disks were fabricated (Diameter 10 mm, thickness 3 mm). Anodizing treatment (ASD) group, RBM and anodizing treatment (RBM/ASD) group, control (machined surface) group were divided. In this study, osteoblast-like cell was used for experiments. The experiments consist of surface characteristics evaluation by FE-SEM images, energy dispersive spectroscopy and stereo-SEM. In order to evaluate cell adhesion evaluation by crystal violet assay and observe cells form by confocal laser microscopy. To assess cell proliferation by XTT assay, cell differentiation by RT-PCR and mineralization by Alizarin red S stain assay. ELISA analyzer was used for Quantitative evaluation. Comparative analysis was run by one-way ANOVA (SPSS version 18.0). Differences were considered statistically significant at P<.05. Results: In ASD group and RBM/ASD group, the surface shape of the crater was observed and components of oxygen and phosphate ions in comparison with the control group were detected. The surface average roughness was obtained $0.08{\pm}0.04{\mu}m$ in the control group, $0.52{\pm}0.14{\mu}m$ in ASD group and $1.45{\pm}0.25{\mu}m$ in RBM/ASD group. In cell response experiments, ASD group and RBM/ASD group were significantly higher values than control group in cell adhesion and mineralization phase, control group was the highest values in the proliferative phase. In RT-PCR experiments, RBM/ASD group was showed higher ALP activity than other groups. RBM/ASD group in comparison with ASD group was significantly higher value for cell adhesion and proliferation phase. Conclusion: In the limitation of this study, we are concluded that the surface treatment with RBM/ASD seems more effective than ASD alone or machined surface on cellular response.

Synthesis and Properties of Molybdenum and Tungsten Oxo-Nitrosyl Complexes of Methylthioamidoxime (산소-니트로실 착물의 연구(제3보): 티오메틸아미드옥심의 몰리브덴과 텅스텐 산소-니트로실 착물의 합성과 특성)

  • Roh, Soo Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The pentanuclear complexes have been obtained by the reactions of molybdenum(VI) and tungsten(VI) polynuclear complexes with molybdenum(O) and tungsten(O) dinitrosyl mononuclear complexes, and methylthioamidoxime. The prepared complexes (n-Bu4N)2[Mo4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](1), (n-Bu4N)2[W4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](2), (n-Bu4N)2[Mo4O12W (NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] (3) have been characterized by elemental analysis, infrared, UV-visible and 1H NMR spectra. The complexes are elucidated the cis-{M(NO)2}2+(M = Mo, W) unit and a slight delocalization by spectroscopy. The structure of (n-Bu4N)2[W4O12Mo(NO) 2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P21}a$, a = 22.14(2) $\AA$, b = 14.93(1) $\AA$, c = 23.20(1) $\AA$, $\beta$ = 111.08(6) $\AA$, V = 7155(9) $\AA$, Z = 4, final R = 0.072 for 6191(I > $3\sigma(I)).$ The structure of complex forms two dinuclear [W2O5{CH3SCH2C(NH2)NHO}{CH3SCH2C(NH)NO}] and a central {Mo(NO)2} 2+ core. The geometric structure of the {Mo(NO)2} 2+unit is the formally cistype and C2v symmetry.

  • PDF