• 제목/요약/키워드: cryptochrome 1

검색결과 9건 처리시간 0.026초

Comparative Proteomic Analysis of Blue Light Signaling Components in the Arabidopsis Cryptochrome 1 Mutant

  • Phee, Bong-Kwan;Park, Sebyul;Cho, Jin-Hwan;Jeon, Jong-Seong;Bhoo, Seong Hee;Hahn, Tae-Ryong
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.154-160
    • /
    • 2007
  • An Arabidopsis hy4 mutant that is specifically impaired in its ability to undergo blue light dependent photomorphogenesis was used to identify cryptochrome 1 signaling-related components. Proteomic analysis revealed about 205 differentially expressed protein spots in the blue light-irradiated hy4 mutant compared to the wild-type. The proteins corresponding to 28 up-regulated and 33 down-regulated spots were identified. Obvious morphological changes in the hy4 mutant were closely related to the expression of various transcription factors. Our findings suggest that blue light signals may be involved in many cellular processes including disease resistance and stress responses.

Diurnal gene expression of $Period2$, $Cryptochrome1$, and arylalkylamine $N$-acetyltransferase-2 in olive flounder, $Paralichthys$ $olivaceus$

  • Kim, Na-Na;Shin, Hyun-Suk;Lee, Je-Hee;Choi, Cheol-Young
    • Animal cells and systems
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2012
  • The suprachiasmatic nucleus (SCN) of the teleost hypothalamus contains a central circadian pacemaker, which adjusts circadian rhythms within the body to environmental light-dark cycles. It has been shown that exposure to darkness during the day causes phase shifts in circadian rhythms. In this study, we examined the effect of exposure to darkness on the mRNA expression levels of two circadian clock genes, namely, $Period2$ ($Per2$) and $Cryptochrome1$ ($Cry1$), and the rate-limiting enzyme in melatonin synthesis, arylalkylamine $N$-acetyltransferase-2 (Aanat2), in the pineal gland of olive flounder, $Paralichthys$ $olivaceus$. The expression of these genes showed circadian variations and was significantly higher during the dark phase. These changes may be involved in the mechanism of dark-induced phase shifts. Furthermore, this study suggests that olive flounder may be a teleost model to investigate the localization and function of circadian oscillators.

MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis

  • Shim, Sangrea;Lee, Hong Gil;Seo, Pil Joon
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.746-757
    • /
    • 2021
  • Plant somatic cells can be reprogrammed into a pluripotent cell mass, called callus, which can be subsequently used for de novo shoot regeneration through a two-step in vitro tissue culture method. MET1-dependent CG methylation has been implicated in plant regeneration in Arabidopsis, because the met1-3 mutant exhibits increased shoot regeneration compared with the wild-type. To understand the role of MET1 in de novo shoot regeneration, we compared the genome-wide DNA methylomes and transcriptomes of wildtype and met1-3 callus and leaf. The CG methylation patterns were largely unchanged during leaf-to-callus transition, suggesting that the altered regeneration phenotype of met1-3 was caused by the constitutively hypomethylated genes, independent of the tissue type. In particular, MET1-dependent CG methylation was observed at the blue light receptor genes, CRYPTOCHROME 1 (CRY1) and CRY2, which reduced their expression. Coexpression network analysis revealed that the CRY1 gene was closely linked to cytokinin signaling genes. Consistently, functional enrichment analysis of differentially expressed genes in met1-3 showed that gene ontology terms related to light and hormone signaling were overrepresented. Overall, our findings indicate that MET1-dependent repression of light and cytokinin signaling influences plant regeneration capacity and shoot identity establishment.

A Review on Metabolism and Cancer in Relation with Circadian Clock Connection

  • Merlin Jayalal, L.P.
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.198-210
    • /
    • 2012
  • Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.

Effect of mPER1 on the Expression of HSP105 Gene in the Mouse SCN

  • Kim Han-Gyu;Bae Ki-Ho
    • 대한의생명과학회지
    • /
    • 제12권1호
    • /
    • pp.53-56
    • /
    • 2006
  • The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the circadian pacemaker entrained to the 24-hr day by environmental time cues. Major circadian genes such as mPeriod ($mPer1{\sim}3$) and mCryptochrome ($mCry1{\sim}2$) are actively transcribed by the action of CLOCK/BMAL heterodimers, and in turn, these are being suppressed by the mPER/mCRY complex. In the study, the locomotor activity rhythms of mPer1 Knockout (KO) mice are measured, and the expression profiles of Heat Shock Protein 105kDa (HSP 105) genes in the SCN were measured by in situ hybridization. In agreement with previous reports, the locomotor activity rhythm of mPer1 KO mice was much shorter than that of wildtype. In addition, the total bout of activity of mPer1 KO was less in comparison to control mice. The expression of HSP 105 in the SCN of mPer1 KO mice was ranged from CT6 to CT22, with a peak level at CT14, implying that the gene are under the control of circadian clock. However, the expression of HSP 105 in the SCN of wildtype could not be detected in our study. Further analysis will reveal the direct or indirect regulation by mPer1 on the expression in the SCN and the role of the gene in the circadian clock.

  • PDF

In silico analysis of candidate genes involved in light sensing and signal transduction pathways in soybean

  • Quecini, V.;Zucchi, M.I.;Pinheiro, J.B.;Vello, N.A.
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.59-73
    • /
    • 2008
  • Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag (EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis genefamily homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.

생쥐 생식소의 발달 단계에 따른 일주기성 유전자 발현에 관한 연구 (Expression of the Circadian Clock Genes in the Mouse Gonad)

  • 정미경;최윤정;정경화;김은아;정형민;이숙환;윤태기;채영규
    • 한국발생생물학회지:발생과생식
    • /
    • 제8권1호
    • /
    • pp.57-64
    • /
    • 2004
  • 본 연구는 생쥐의 난소 및 정소 조직에서 발달 단계에 따라 나타나는 일주기성 clock유전자의 발현과 단백질의 발현 양상을 알아보고자 하였다. 생쥐의 난소 및 정소에서 일주기성 변화와 연관된 유전자(Period1(Per1), Period2(Per2), Period3(Per3), Cryptochromel(Cry1), Cryptochrome2 (Cry2), Clock, Bmall)와 시교차 상핵에서 분비되어 표적 조직 또는 기관으로 전달되는 물질로 알려진 Prokineticin (Prok2)에 대 한 수용체들 (Prok1r과 Prok2r), PERI 단백질의 발현 양상을 발달 단계에 따라 (post partum day; ppd 1, 7, 10, 21, 35) 확인하였다. 주요 clock 유전자들은 생후 발달 단계에 따라 각각 다양한 발현양상을 보였다. 난소의 경우 많은 난포가 성장을 시작하는 시기인 생후 7일과 10일을 전후하여 발현량이 대부분 증가하는 것을 볼 수 있었으며, 정소의 경우에도 발달 단계에 따라 7일에서 발현이 증가하는 양상을 보였다. 특히 clock유전자들은 생후 7일과 10일에서 상대적으로 높은 발현 양상을 보였다 시교차 상핵에서 분비되어 표적기관으로 분비되는 것으로 알려진 Prok2의 수용체의 경우에도 주요 주기성 유전자들의 발현이 증가하는 것과 같은 시기에 발현이 높아지는 것을 확인할 수 있었고, 생식소 발달 초기에 강하게 발현되나 차후 점진적으로 감소하는 것을 확인할 수 있었다. 또한 PER1의 발현양상을 면역조직화학적 방법으로 확인한 결과, 난포의 각 발달 단계에서 난소 내 정상적인 난포의 과립세포와 난자에서 높게 발현되는 것을 알 수 있었고, 상기의 결과는 Perl 유전자의 발현 양상과 일치함을 확인할 수 있었다 또한 정소 내 Per1 유전자와 PER1 단백질의 발현은 모두 생후 10일과 21일에서 감소하는 경향을 보이나 성적으로 성숙됨에 따라 다시 증가하는 것을 확인할 수 있어, PER1 단백질은 생식소의 발생 단계별로 다양한 발현 양상의 차이를 보이며, 정자와 난자의 정상적인 발달에 밀접한 연관이 있음을 추론할 수 있었다. 본 연구의 결과, 일주기성 clock유전자들 중 특히 Per1이 생식소의 정상 발달에 중요하게 작용할 수 있음을 시사하여 차후 이에 대한 다양한 연구가 진행되어야 할 것으로 생각된다.

  • PDF

Transcript accumulation of carotenoid biosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803 during the dark-to-light transition is mediated by photosynthetic electron transport

  • Ryu, Jee-Youn;Song, Ji-Young;Chung, Young-Ho;Park, Young-Mok;Chow, Wah-Soon;Park, Youn-Il
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.149-155
    • /
    • 2010
  • Expression of the genes for carotenoid bio-synthesis (crt) is dependent on light, but little is known about the underlying mechanism of light sensing and signalling in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter, Synechocystis). In the present study, we investigated the light-induced increase in the transcript levels of Synechocystis crt genes, including phytoene synthase (crtB), phytoene desaturase (crtP), ${\zeta}$-carotene desaturase (crtQ), and ${\beta}$-carotene hydroxylase (crtR), during a darkto-light transition period. During the dark-to-light shift, the increase in the crt transcript levels was not affected by mutations in cyanobacterial photoreceptors, such as phytochromes (cph1, cph2 and cph3) and a cryptochrome-type photoreceptor (ccry), or respiratory electron transport components NDH and Cyd/CtaI. However, treatment with photosynthetic electron transport inhibitors significantly diminished the accumulation of crt gene transcripts. Therefore, the light induction of the Synechocystis crt gene expression is most likely mediated by photosynthetic electron transport rather than by cyanobacterial photoreceptors during the dark-to-light transition.