• Title/Summary/Keyword: cryostat

Search Result 168, Processing Time 0.034 seconds

MIRIS 우주관측카메라 FM Dewar 설계

  • Cha, Sang-Mok;Mun, Bong-Gon;Jeong, Ung-Seop;Lee, Dae-Hui;Nam, Uk-Won;Park, Yeong-Sik;Lee, Chang-Hui;Park, Seong-Jun;Lee, Deok-Haeng;Ga, Neung-Hyeon;Han, Won-Yong;Park, Jang-Hyeon;Seon, Gwang-Il;Yang, Sun-Cheol;Park, Jong-O;Lee, Seung-U;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • MIRIS 우주관측카메라는 과학기술위성 3호의 주탑재체로서 $0.8{\sim}2.0{\mu}m$의 근적외선영역에서 우주배경복사와 우리은하 평면의 Pa-$\alpha$ survey 관측을 목적으로 한다. 이러한 임무를 수행하기 위해 MIRIS 우주관측카메라에는 MCT(HgCdTe) IR 검출기가 사용되고 6개의 필터를 장착할 수 있는 필터휠이 설계되었으며, 열잡음을 줄이고 원하는 SNR을 얻기 위해 모두 100K 이하로 냉각이 요구된다. 효과적인 냉각 및 저온유지를 위해서 외부의 열을 1차적으로 차단하는 Cryostat 외부용기와 100K 이하로 냉각되는 내부 Cold Box의 이중구조를 가지는 Dewar가 설계 되었다. 내부 Cold Box의 냉각은 소형 stirling cooler로 이루어지고 외부의 열 유입량이 Cooler의 냉각용량을 넘지 않도록 설계하였다. Cryostat 외부용기는 radiation cooling으로 냉각되어 200K 이하의 온도를 유지하며 내부 Cold Box로의 열유입을 최소화하기 위해 GFRP(Glass Fiber Reinforced Plastic) 단열 지지대와 MLI(Multi Layer Insulation)가 사용된다. 또한 100K으로 냉각시 필터고정부와 Cold Box 구조에서 일어날 수 있는 구조적인 피로도를 줄이고 열변형에 의한 문제를 방지하기 위한 고려가 설계에 포함되었다. FM(Flight Model)은 고진공 환경의 우주공간에서 문제가 발생하지 않도록 설계되었다. 또한 EQM 진동시험결과를 토대로 발사환경에서 발생하는 강한 진동을 견딜 수 있도록 FEM(Finite Elements Method) 구조해석을 통하여 필터고정부에 flexible structure 설계와 완충제를 추가하고 필터휠 구동부와 harness 고정부 및 cooler 지지부를 비롯한 전체 구조물에서 충분히 진동을 극복할 수 있도록 설계하였다.

  • PDF

PROTOTYPE DEVELOPMENT OF CCD IMAGING SYSTEM FOR ASTRONOMICAL APPLICATIONS (천문관측용 극미광 영상장비 시험 모델 개발)

  • Jin, Ho;Han, Won-Yong;Nam, Wuk-Won;Lee, Jae-Woo;Lee, Seo-Gu;Lee, Woo-Baik
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.259-268
    • /
    • 1997
  • We present the development process of a prototype CCD imaging system which is being built at Korea Astronomy Observatory(KAO) for astronomical applications. The CCD imaging system requires very low noise and high stability characteristics and is widely used for astronomical purposes from infrared to ultraviolet wavelength regions. However its system design, particularly for the controller design technique, as heart of the system, is not secured in Korea so far. The prototype electronics developed in this study consists of a signal chip controller which was implemented in an EPLD(Erasable Programable Logic Device) and an analog driver, a video processor with a LN2 cooling cryostat. A PC system was employed to control the whole system and to store the image data considering compatibility of the system. We have successfully obtained the first image in the laboratory with the prototype of this imaging system, and an image of the M15 at Sobaeksan Astronomy Observatory.

  • PDF

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Development and Test of a Cooling System for a 154 kV Superconducting Fault Current Limiter

  • Kim, Heesun;Han, Young Hee;Yang, Seong-Eun;Yu, Seung-Duck;Park, Byung Jun;Park, Kijun;Yoo, Jaeun;Kim, Hye-Rim;In, Sehwan;Hong, Yong Joo;Yeom, Hankil
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.141-144
    • /
    • 2015
  • The superconducting fault current limiter (SFCL) is an electric power device that limits the fault current immediately in a power grid. Korea Electric Power Corporation (KEPCO) has been developing a 154 kV, 2 kA SFCL since 2011 to protect power grids from increasing fault current and improve the stability and quality of electric power. This SFCL adopts 2G YBCO wires and operates at 71 K and 5 bars. In this paper, a cooling system for the 154 kV SFCL and its cooling test results are reported. This cooling system uses a Stirling-type cooler to make sub-cooled liquid nitrogen ($LN_2$), which cools the superconductor modules of the SFCL. The $LN_2$ is circulated between the cooler and the cryostat that contains superconductor modules. The $LN_2$ also plays the role of a high voltage insulator between the modules and the cryostat, so the pressure was maintained at 5 bars for high insulation performance. After installation in a test site, the cooling characteristics of the system were tested. In this operation test, some important data were measured such as temperature distribution in $LN_2$, pressure change, performance of the heat exchanger, and cooling capacity of the total system. Consequently, the results indicate that the cooling system operates well as designed.

Fabrication and Tests of the 24 kV class Hybrid Superconducting Fault Current Limiter

  • Lee, B.W.;Sim, J.;Park, K.B.;Oh, I.S.;Yim, S.W.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.32-36
    • /
    • 2007
  • We fabricated and tested a novel hybrid superconducting fault current limiter (SFCL) of three-phase $24kV_{rms}/630A_{rms}$ rating. In order to apply conventional resistive SFCLs into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. In addition, the method to quench all components at the same instant needs very sophisticated skill and careful operation. Due to these problems, the practical applications of SFCL were pending. Therefore, in order to make practical SFCL, the price of SFCL should be lowered and should meet the demand of utilities. We designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for field tests are in the process.

Test and Fabrication of the 1MJ Superconducting Magnetic Energy Storage System (1MJ급 초전도에너지저장시스템 제작 및 평가)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Kim, S.W.;Bae, J.H.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.685-687
    • /
    • 2002
  • For several decades researches and developments on superconducting magnetic energy storage (SMES) system have been done for efficient electric power management. Korea Electrotechnology Research Institute(KERI) have developed of a 1MJ. 300kVA SMES System for improving power quality in sensitive electric loads. We developed the code for design of a SMES magnet. which could find the parameters of the SMES magnet having minimum amount of superconductors for the same stored energy. and designed the 1MJ SMES magnet by using it. This paper describes the design. fabrication and experimental results for the SMES magnet. cryostat, HTS current lead and power converter.

  • PDF

The study of magnet design for 12inch single crystal growing (12inch 단결정 성장을 위한 magnet 설계에 관한 연구)

  • Choi, S.J.;Sim, K.D.;Jin, H.B.;Han, H.H.;Kim, K.H.;Lee, S.J.;Lee, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.761-763
    • /
    • 2002
  • 실리콘 웨이퍼 성장에 유리한 수평자장형 마그네트에는 saddle type, cylinder type 등 여러 가지 종류가 있다. 이러한 종류의 마그네트를 사양을 바꿔가며 균일도, 중심자장, 권선에 사용되는 선재량 등을 비교하였다. 해석 tool은 'opera-3d'을 사용하였으며, 기본적인 사양은 실제 System에서 요구되는 수치를 토대로 결정하였다. 본 연구를 토대로 12inch 단결정 성장을 위한 마그네트 종류와 사양 그리고 Cryostat의 기본적인 크기와 두께를 결정하게 되었다.

  • PDF

KSTAR Superconducting Magnet Supporting Post Prototype Manufacturing and Structural Load Test (KSTAR 초전도자석 지지각 시작품재작 및 구조시험)

  • 허남일;이영신
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 2001
  • A magnet supporting post installed between the lower TF coil tooled by 4.5 K supercritical helium and the cryostat base is one of the most important components of the superconducting magnet supporting structure for KSTAR Tokamak. This structure should be flexible to absorb thermal shrink of the magnet and also should be rigid to support the magnet weight and the Plasma disruptions load. The Post was designed with stainless steel 316LN and CFRP that have low thermal conductivity and high structural strength at low temperature. In order to verify the possibility of fabrication and the structural safety. a whole scale prototype of the KSTAR magnet supporting post was manufactured and tested. Static and compressive cyclic load tests under the maximum Plasma vertical disruption load and the magnet dead weight were performed. The teat results showed that the magnet supporting post of KSTAR Tokamak was possible to manufacture and structurally rigid.

  • PDF