• Title/Summary/Keyword: cryogenic

Search Result 1,160, Processing Time 0.029 seconds

Design and Operation of a Small-Scale Hydrogen Liquefier (소형 수소액화기 설계 및 운전에 관한 연구)

  • Baik, Jong Hoon;Karng, Sarng Woo;Kang, Hyungmook;Garceau, Nathaniel;Kim, Seo Young;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

Tritium Fuel Cycle Technology of ITER Project (ITER 사업의 삼중수소 연료주기 기술)

  • Yun, Sei-Hun;Chang, Min-Ho;Kang, Hyun-Goo;Kim, Chang-Shuk;Cho, Seung-Yon;Jung, Ki-Jung;Chung, Hong-Suk;Song, Kyu-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2012
  • The ITER fuel cycle is designed for DT operation in equimolar ratio. It involves not only a group of fuelling system and torus cryo-pumping system of the exhaust gases through the divertor from the torus in tokamak plant, but also from the exhaust gas processing of the fusion effluent gas mixture connected to the hydrogen isotope separation in cryogenic distillation to the final safe storage & delivery of the hydrogen isotopes in tritium plant. Tritium plant system supplies deuterium and tritium from external sources and treats all tritiated fluids in ITER operation. Every operation and affairs is focused on the tritium inventory accountancy and the confinement. This paper describes the major fuel cycle processes and interfaces in the tritium plant in aspects of upcoming technologies for future hydrogen and/or hydrogen isotope utilization.

Performance Test of 2 kW Class Reverse Brayton Refrigeration System (냉동능력 2 kW 급 역브레이튼 극저온 냉각시스템 성능시험)

  • KO, JUNSEOK;LEE, KEUN-TAE;PARK, SEONG-JE;KIM, JONGWOO;CHOO, SANGYOON;HONG, YONG-JU;IN, SEHWAN;PARK, JIHO;KIM, HYOBONG;YEOM, HANKIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.429-435
    • /
    • 2020
  • This paper describes the experimental study of reverse-Brayton refrigeration system for application to high temperature superconductivity electric devices and LNG re-liquefaction. The reverse-Brayton refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa, cooling capacity of 2 kW at 77 K, and neon as a working fluid. The refrigeration system is developed with multi scroll compressor, turbo expander and plate heat exchanger. From experiments, the performance characteristics of used components is measured and discussed for 77-120 K of operating temperature. The developed refrigeration system shows the cooling capacity of 1.23 kW at 77 K and 1.64 kW at 110 K.

A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

  • Le, T.D.;Kim, J.H.;Hyeon, C.J.;Kim, D.K.;Yoon, Y.S.;Lee, J.;Park, Y.G.;Jeon, H.;Quach, H.L.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.25-29
    • /
    • 2016
  • The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

Conceptual design of cooling anchor for current lead on HTS field coils

  • Hyeon, C.J.;Kim, J.H.;Quach, H.L.;Chae, S.H.;Yoon, Y.S.;Lee, J.;Han, S.H.;Jeon, H.;Choi, Y.H.;Lee, H.G.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.38-43
    • /
    • 2017
  • The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

Integrity comparison for various design specifications of corner protections in LNG storage tank (LNG저장탱크 코너프로텍션의 설계사양에 따른 건전성 비교)

  • Kim Hyoungsik;Hong Seongho;Seo Heungseok
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.4 s.18
    • /
    • pp.33-39
    • /
    • 2002
  • [ $9\%$ ] nickel steel LNG storage tank have double containments that can store cryogenic LNG independently. Inner tank material is used as $9\%$ nickel steel and outer tank is constructed by concrete. Comer protection which is installed on inner surface of concrete corner is consist of $9\%$ nickel steel liner and form glass insulator that make reduce tension at corner when LNG is leaked from inner tank. It is very difficult to design corner protection because expansion and contraction of liner make stress state complex. Corner protections of operating tank in KOGAS are designed by Japanese engineering company such as TKK, KHI and England company of WHESSOE. This paper is mainly focused on the integrity comparison of them according to requirements of Appendix 4 in ASME Section VIII Div. 2 by using FEM.

  • PDF

Microstructure and Electrical Properties of Low Temperature Processed Ohmic Contacts to p-Type GaN

  • Park, Mi-Ran;Song, Young-Joo;Anderson, Wayne A.
    • ETRI Journal
    • /
    • v.24 no.5
    • /
    • pp.349-359
    • /
    • 2002
  • With Ni/Au and Pd/Au metal schemes and low temperature processing, we formed low resistance stable Ohmic contacts to p-type GaN. Our investigation was preceded by conventional cleaning, followed by treatment in boiling $HNO_3$:HCl (1:3). Metallization was by thermally evaporating 30 nm Ni/15 nm Au or 25 nm Pd/15 nm Au. After heat treatment in $O_2$ + $N_2$ at various temperatures, the contacts were subsequently cooled in liquid nitrogen. Cryogenic cooling following heat treatment at $600^{\circ}C$ decreased the specific contact resistance from $9.84{\times}10^{-4}$ ${\Omega}cm^2$ to $2.65{\times}10^{-4}$ ${\Omega}cm^2$ for the Ni/Au contacts, while this increased it from $1.80{\times}10^{-4}$ ${\Omega}cm^2$ to $3.34{\times}10^{-4}$ ${\Omega}cm^2$ for the Pd/Au contacts. The Ni/Au contacts showed slightly higher specific contact resistance than the Pd/Au contacts, although they were more stable than the Pd contacts. X-ray photoelectron spectroscopy depth profiling showed the Ni contacts to be NiO followed by Au at the interface for the Ni/Au contacts, whereas the Pd/Au contacts exhibited a Pd:Au solid solution. The contacts quenched in liquid nitrogen following sintering were much more uniform under atomic force microscopy examination and gave a 3 times lower contact resistance with the Ni/Au design. Current-voltage-temperature analysis revealed that conduction was predominantly by thermionic field emission.

  • PDF

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Optimum Size Combination of Heat Exchangers in a Small Gifford-Mchon/ Joule-Thomson Refrigerator (소형 Gifford-McMahon/Joule-Thomson 냉동기에서 열교환기의 최적 조합)

  • 김영률;이상용;장호명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2196-2202
    • /
    • 1992
  • The optimum size combination of heat exchangers in a Joule-Thomson(J-T) circuit for small cryogenic systems has been sought analytically, when the circuit is combined with a two-stage Gifford-McMahon(GM) cooler. Full thermodynamic cycle analysis was carried out to predict the performance of the combined refrigeration system. Relevant convective heat transfer coefficients, the computerized properties of helium, and the refrigeration capacity curve of a typical GM cooler have been used in the analysis. The result showed that, by changing the configuration(heat exchanger area ratio) of the system, the performance of the commonly-used GM/J-T refrigerators could be optimized. For the maximum refrigeration performance, the optimum mass flow rate of the refrigerant and the relative size between the heat exchangers have been obtained, when the cooling load was 0.1W at 3.995K with the total heat exchanger area being given.

On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester (액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구)

  • Choi, Jae-Kon;Bang, Moon-Soo;Han, Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-83
    • /
    • 1997
  • Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at $287^{\circ}C$ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with $0.1{\mu}m$ to $0.2{\mu}m$ in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.

  • PDF