• Title/Summary/Keyword: cryogelation

Search Result 2, Processing Time 0.016 seconds

Effect of polymer concentration in cryogelation of gelatin and poly (vinyl alcohol) scaffolds

  • Ceylan, Seda;Demir, Didem;Gul, Gulsah;Bolgen, Nimet
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The aim of this study was to investigate the effect of total polymer concentration on the chemical structure, morphology of pores, porosity, swelling ratio, degradation of gelatin-poly (vinyl alcohol) (Gel-PVA) cryogel scaffolds. Porous cryogels were prepared with cryogelation technique by using glutaraldehyde as a crosslinker. Functional group composition of cryogels after crosslinking was investigated by Fourier Transform Infrared (FTIR). The morphology of cryogels was characterized via scanning electron microscopy (SEM) and porosity analysis. All of the cryogels had a porous structure with an average pore size between $45.58{\pm}14.28$ and $50.14{\pm}4.26{\mu}m$. The cryogels were biodegradable and started to degrade in 14 days. As the polymer concentration increased the swelling ratio, the porosity and the degradation rate decreased. Spongy and mechanically stable Gel-PVA cryogels, with tunable properties, can be potential candidates as scaffolds for tissue engineering applications.

Real-time Evolution of Poly (3-hexylthiophene) type-II Phase in P3HT:PCBM Blend thin films

  • Lee, Hyeon-Hwi;Lee, Si-U;Geum, Hui-Seong;Kim, Han-Seong;Kim, Je-Han;Lee, Dong-Ryeol;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.168.2-168.2
    • /
    • 2015
  • We observed the temperature-dependent evolution and behavior of P3HT type-II phase during a real time annealing process from a cryo-cooled low temperature in the absence and presence of an Al electrode. A poly (3-hexylthiophene) (P3HT) Type-II phase in the P3HT:PCBM films started to form near at $-10^{\circ}C$, regardless of Al layer presence. In the absence of an Al layer, type-II phase was extinct at $30^{\circ}C$. However, the extinction temperature was extended to $50^{\circ}C$ in the presence of the Al layer. Simultaneously, combined with the type-II phase, a 1:3 ordered P3HT type-II (1/3,0,0) super-lattice peak evolved. These type-II domains tended to be formed near the Al electrode layer with higher aligned status than host P3HT crystals.

  • PDF