• Title/Summary/Keyword: cry2

Search Result 115, Processing Time 0.028 seconds

RFLP Analysis of cry1 and cry2 Genes of Bacillus thuringiensis Isolates from India

  • Patel, Ketan D.;Ingle, Sanjay S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.729-735
    • /
    • 2012
  • The PCR-RFLP method has been useful for detection of known genes and identification of novel genes. In the present study, degenerate primers were designed from five groups of cry1 genes for PCR-RFLP analysis. Bacillus thuringiensis (Bt) isolates from different regions were evaluated for PCR amplification of various cry1 genes using newly designed primers and cry2 genes using reported primers. PCR analysis showed an abundance of cry1A genes and especially cry1Ac genes in isolates from all regions. RFLP analysis revealed the presence of multiple cry1A genes in isolates from central and southern regions. Unique digestion patterns of cry1A genes were observed in isolates from each region. Few of the isolates represented a digestion pattern of cry1A genes that did match to any of the known cry1A genes. RFLP analysis suggested an abundance of cry2Ab along with a novel cry2 gene in Bt isolates from different regions of India. Sequence analysis of the novel cry2 gene revealed 95% sequence identity to cry2Ab and cry2Ah genes. Phylogenetic analysis revealed that the novel cry2 gene could have diverged earlier than the other cry2 genes. Our results encourage finding of more diverse cry2 genes in Bt isolates. Rarefaction analysis was used to compare cry1A gene diversity in isolates from different soil types. It showed a higher degree of cry1A gene diversity in isolates from central region. In the present study, we propose the use of novel degenerate primers for cry1 genes and the PCR-RFLP method using a single enzyme to distinguish multiple cry1A and cry2 genes as well as identify novel genes.

Diversity of Bacillus thuringiensis Strains Isolated from Citrus Orchards in Spain and Evaluation of Their Insecticidal Activity Against Ceratitis capitata

  • J.C., Vidal-Quist;Castanera, P.;Gonzalez-Cabrera, J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.749-759
    • /
    • 2009
  • A survey of Bacillus thuringiensis (Berliner) strains isolated from Spanish citrus orchards has been performed, and the strains were tested for insecticidal activity against the Mediterranean fruit fly Ceratitis capitata (Wiedemann), a key citrus pest in Spain. From a total of 150 environmental samples, 376 isolates were selected, recording a total B. thuringiensis index of 0.52. The collection was characterized by means of phase-contrast microscopy, SDS-PAGE, and PCR analysis with primer pairs detecting toxin genes cry1, cry2, cry3, cry4, cry5, cry7, cry8, cry9, cry10, cry11, cry12, cry14, cry17, cry19, cry21, cry27, cry39, cry44, cyt1, and cyt2. Diverse crystal inclusion morphologies were identified: bipyramidal (45%), round (40%), adhered to the spore (7%), small (5%), and irregular (3%). SDS-PAGE of spore-crystal preparations revealed 39 different electrophoresis patterns. All primer pairs used in PCR tests gave positive amplifications in strains of our collection, except for primers for detection of cry3, cry19, cry39, or cry44 genes. Strains containing cry1, cry2, cry4, and cry27 genes were the most abundant (48.7%, 46%, 11.2%, and 8.2% of the strains, respectively). Ten different genetic profiles were found, although a total of 109 strains did not amplify with the set of primers used. Screening for toxicity against C. capitata adults was performed using both spore-crystal and soluble fractions. Mortality levels were less than 30%. We have developed a large and diverse B. thuringiensis strain collection with huge potential to control several agricultural pests; however, further research is needed to find out Bt strains active against C. capitata.

A Novel cry2Ab Gene from the Indigenous Isolate Bacillus thuringiensis subsp. kurstaki

  • Sevim, Ali;Eryuzlu, Emine;Demirbag, Zihni;Demir, Ismail
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2012
  • A novel cry2Ab gene was cloned and sequenced from the indigenous isolate of Bacillus thuringiensis subsp. kurstaki. This gene was designated as cry2Ab25 and its sequence revealed an open reading frame of 1,902 bp encoding a 633 aa protein with calculated molecular mass of 70 kDa and pI value of 8.98. The amino acid sequence of the Cry2Ab25 protein was compared with previously known Cry2Ab toxins, and the phylogenetic relationships among them were determined. The deduced amino acid sequence of the Cry2Ab25 protein showed 99% homology to the known Cry2Ab proteins, except for Cry2Ab10 and Cry2Ab12 with 97% homology, and a variation in one amino acid residue in comparison with all known Cry2Ab proteins. The cry2Ab25 gene was expressed in Escherichia coli BL21(DE3) cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Cry2Ab25 protein is about 70 kDa. The toxin expressed in BL21(DE3) exhibited high toxicity against Malacosoma neustria and Rhagoletis cerasi with 73% and 75% mortality after 5 days of treatment, respectively.

Intermolecular Interaction Between Cry2Aa and Cyt1Aa and Its Effect on Larvicidal Activity Against Culex quinquefasciatus

  • Bideshi, Dennis K.;Waldrop, Greer;Fernandez-Luna, Maria Teresa;Diaz-Mendoza, Mercedes;Wirth, Margaret C.;Johnson, Jeffrey J.;Park, Hyun-Woo;Federici, Brian A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1107-1115
    • /
    • 2013
  • The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that has evolved in Culex quinquefasciatus. It is also known that Cyt1Aa, which is highly lipophilic, synergizes Cry11Aa by functioning as a surrogate membrane-bound receptor for the latter protein. Little is known, however, about whether Cyt1Aa can interact similarly with other Cry proteins not primarily mosquitocidal; for example, Cry2Aa, which is active against lepidopteran larvae, but essentially inactive or has very low toxicity to mosquito larvae. Here we demonstrate by ligand binding and enzyme-linked immunosorbent assays that Cyt1Aa and Cry2Aa form intermolecular complexes in vitro, and in addition show that Cyt1Aa facilitates binding of Cry2Aa throughout the midgut of C. quinquefasciatus larvae. As Cry2Aa and Cry11Aa share structural similarity in domain II, the interaction between Cyt1Aa and Cry2Aa could be a result of a similar mechanism previously proposed for Cry11Aa and Cyt1Aa. Finally, despite the observed interaction between Cry2Aa and Cyt1Aa, only a 2-fold enhancement in toxicity resulted against C. quinquefasciatus. Regardless, our results suggest that Cry2Aa could be a useful component of mosquitocidal endotoxin complements being developed for recombinant strains of B. thuringiensis subsp. israelensis and B. sphaericus aimed at improving the efficacy of commercial products and avoiding resistance.

Deregulated Expression of Cry1 and Cry2 in Human Gliomas

  • Luo, Yong;Wang, Fan;Chen, Lv-An;Chen, Xiao-Wei;Chen, Zhi-Jun;Liu, Ping-Fei;Li, Fen-Fen;Li, Cai-Yan;Liang, Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5725-5728
    • /
    • 2012
  • Growing evidence shows that deregulation of the circadian clock plays an important role in the development of malignant tumors, including gliomas. However, the molecular mechanisms of gene chnages controlling circadian rhythm in glioma cells have not been explored. Using real time polymerase chain reaction and immunohistochemistry techniques, we examined the expression of two important clock genes, cry1 and cry2, in 69 gliomas. In this study, out of 69 gliomas, 38 were cry1-positive, and 51 were cry2-positive. The expression levels of cry1 and cry2 in glioma cells were significantly different from the surrounding non-glioma cells (P<0.01). The difference in the expression rate of cry1 and cry 2 in high-grade (grade III and IV) and low-grade (grade 1 and II) gliomas was non-significant (P>0.05) but there was a difference in the intensity of immunoactivity for cry 2 between high-grade gliomas and low-grade gliomas (r=-0.384, P=0.021). In this study, we found that the expression of cry1 and cry2 in glioma cells was much lower than in the surrounding non-glioma cells. Therefore, we suggest that disturbances in cry1 and cry2 expression may result in the disruption of the control of normal circadian rhythm, thus benefiting the survival of glioma cells. Differential expression of circadian clock genes in glioma and non-glioma cells may provide a molecular basis for the chemotherapy of gliomas.

Characterization of a Novel cry1-Type Gene from Bacillus thuringiensis subsp. alesti Strain LY-99

  • Qi, Xu Feng;Li, Ming Shun;Choi, Jae-Young;Roh, Jong-Yul;Song, Ji Zhen;Wang, Yong;Jin, Byung-Rae;Je, Yeon-Ho;Li, Jian Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.1
    • /
    • pp.18-27
    • /
    • 2009
  • B. thuringiensis strain LY-99 belonging to subsp. alesti (H3a3c), was isolated from Chinese tobacco warehouse and showed significantly high toxicity to Plutella xylostella. For the identification of the cry1-type genes from B. thuringiensis LY-99, an extended multiplex PCRrestriction fragment length polymorphism (PCRRFLP) method was established by using two pairs of universal primers based on the conserved regions of the cry1-type genes to amplify around 2.4 kb cry1-type gene fragments. Then the DNA fragment was cloned into pGEM-T Easy vector and digested with EcoRI and EcoRV enzymes. Through this method, a known cry1-type gene was successfully identified from the reference strain, B. thuringiensis subsp. alesti. In addition, the RFLP patterns revealed that B. thuringiensis LY-99 included a novel cry1A-type gene in addition to cry1Aa, cry1Ac, cry1Be and cry1Ea genes. The novel cry1A-type gene was designated cry1Ah2 (Genbank accession No DQ269474). An inverse PCR method was used to amplify the flank regions of cry1Ah2 gene. Finally, 3143 bp HindIII fragment from B. thuringiensis LY-99 plasmid DNA including 5' region and partial ORF was amplified, and sequence analysis revealed that cry1Ah2 gene from LY-99 showed 89.31% of maximum sequence similarity with cry1Ac1 crystal protein gene. In addition, the deduced amino acid sequence of Cry1Ah2 protein shared 87.80% of maximum identity with that of Cry1Ac2. This protein therefore belongs to a new class of B. thuringiensis crystal proteins.

Expression and Morphology of Crystal Proteins in Bacillus thuringiensis subsp. kurstaki Cry-B

  • Park, Hyeon-U;Kim, Ho-San;Kim, Yeong-Hun;Jin, Byeong-Rae;Gang, Seok-Gwon
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.157-161
    • /
    • 1994
  • To investigate the morphology of Bacillus thuringiensis crystal proteins, two type crystal protein genes, cryIA(c) gene under the control of cryIA(b) gene promoter and cryIIA gene under the control of its own promoter, were transformed in B. thuringiensis acrystalliferous mutant strain and the transformants were characterized by SDS-PAGE and scanning electron microscopy. The expression and formation of crystal proteins in B. thuringiensis subsp. kurstaki Cry-B revealed that crystal proteins appear to have same molecular weight and morphology to those of wild type strain's, suggesting that the expression and formation of crystal proteins affected not by host cell or recombination of cryIA(e) gene under the control of cryIA(b) gene promoter but by only structural fragment of protoxin.

  • PDF

Identification and Molecular Characterization of Novel cry1-Type Toxin Genes from Bacillus thuringiensis K1 Isolated in Korea

  • Li Ming Shun;Choi Jae-Young;Roh Jong-Yul;Shim Hee-Jin;Kang Joong-Nam;Kim Yang-Su;Wang Yong;Yu Zi Niu;Jin Byung-Rae;Je Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To clone novel cry1-type genes from the Bacillus thuringiensis K1 isolate, about 2.4-kb-long PCR fragments were amplified with two primer sets of ATG1-F/N400-R and 1BeATG1-F/N400-R. Using PCR-RFLP, three novel cry1-type genes, cry1-1, cry1-7, and cry1-44, were obtained from B. thuringiensis K1 and the complete coding sequences of these novel genes were analyzed. The Cry1-1, Cry1-7, and Cry1-44 proteins showed maximum similarities of about 78.0%, 99.7%, and 91.0% with the Cry1Ha1, Cry1Be1, and Cry1Ac2 proteins, respectively. These novel cry1-type genes were expressed using a baculovirus expression vector system and their insecticidal activities were investigated. Whereas all three novel genes were toxic to Plutella xylostella larvae, only Cry1-1 showed insecticidal activity against Spodoptera exigua larvae.

Generation of Transgenic Plant (Nicotiana tabacum var. Petit Havana SR1) harboring Bacillus thuringiensis Insecticidal Crystal Protein Gene, cry II A (Bacillus thuringiensis 살충성 결정단백질 유전자(cry II A)의 형질전환 식물 제작)

  • 이정민;류종석;권무식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.305-311
    • /
    • 1997
  • Bacillus thuringiensis, a gram-positive soil bacterium, is characterized by its ability to produce crystalline inclusions during sporulation. The crystal proteins exhibit a highly specific insecticidal activity. An insecticidal crystal protein (ICP), Cry II A, is specifically toxic to both lepidopteran and dipteran insects. In this study, tobacco plants transformed by the cry II A gene have been generated. The Cry II A crystal protein was purified from E. coli JM103 harboring cry II A gene by differential solubility. The activated Cry II A was prepared by tryptic digestion. The purified protoxin (70 kDa) and the activated toxin (50 kDa) were analyzed by SDS-PAGE. To generate the transgenic tobacco having cry II A gene, the cry II A gene was subcloned to a plant expression vector, pSRL2, having two CaMV 35S promoters. The recombinant plasmid was transformed into tobacco (N. tabacum var. Petit Havana SR1) by Agrobacterium-mediated leaf disc transformation. Through the regeneration, six putative transgenic tobacco plants were obtained and three transformants were confirmed by Southern blot analysis. It has been found that one plant had single copy of cry II A gene, another had two copies of the gene, and the third had a truncated gene. After the immunochemical confirmation of cry II A expression in plants, the transgenic tobacco plants will be used to study the genetics of future generation with the insecticidal crystal protein gene cry II A.

  • PDF

Mosquito Larvicidal Activity of Synechocystis PCC6803 Transformed with the cry11Aa gene to Culex tritaeniorhynchus and Anopheles sinensis (Cry11Aa 유전자로 형질전환된 Synechocystis PCC6803의 작은빨간집모기와 중국얼룩날개모기 유충에 대한 살충효과)

  • 이대원
    • Korean journal of applied entomology
    • /
    • v.43 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • Bacillus thuringiensis produces crystal proteins toxic to medically and agriculturally important pests during sporulation. To improve the activity of insecticidal crystal protein in applying to mosquito larval control, an expression vector, pSyn4D harboring the mosquitocidal cry11Aa gene under control of psbA promoter of Amaranthus hybridus was constructed. This expression vector was transformed into Synechocystis PCC6803 and a transformant, Tr2C was selected with kanamycin. The mosquitocidal cry11Aa gene was stably integrated Into genomic DNA of Tr2C in PCR detection using cry11Aa-specific primers. The transformant expressed 72-kDa Cry11Aa protein and median lethal time (LT$\sub$50/) was approximately 2.1 days for Culex tritaeniorhynchus larvae and 0.7 day for Anopheles sinensis larvae, respectively. These results suggest this transformant can be used for mosquito larval control as a biological control agent.