• Title/Summary/Keyword: crustal movement

Search Result 48, Processing Time 0.028 seconds

Crustal Deformation Parameter Analysis from Permanent GPS Stations in the Korean Peninsula (GPS를 이용한 한반도 지각변동 파라미터 계산)

  • Cho, Jae-Myoung;Yun, Hong-Sic
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.77-80
    • /
    • 2007
  • In this paper GPS data for the period from January 2002 to June 2004 (910 days) were analyzed to quantitatively investigate the plate deformation patterns and distributions in the Korean peninsula. The GPS network is composed of 45 permanent GPS stations. The daily data were analyzed using the GAMIT/GLOBK software and the precise orbits generated by the International GNSS Service (IGS). The research result make it possible to understand the tendency of crustal movement in and around the Korean peninsula, which have an effect on the occurrence of earthquake.

  • PDF

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Improvement of GPS Relative Positioning Accuracy by Using Crustal Deformation Model in the Korean Peninsula (GPS상대측위 정확도 향상을 위한 한반도 지각변동모델 개발)

  • Cho, Jae-Myoung;Yun, Hong-Sik;Lee, Mi-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2011
  • As of 2011, 72 Permanent GPS Stations are installed to control DGPS reference points by the National Geographic Information Institute in South Korea. As the center of the Earth's mass continues to move, the coordinates of the permanent GPS stations become inconsistent over time. Thus, a reference frame using a set of coordinates and their velocities of a global network of stations at a specific period has been used to solve the inconsistency. However, the relative movement of the permanent GPS stations can lower the accuracy of GPS relative positioning. In this research, we first analyzed the data collected daily during the past 30 months at the 40 permanent GPS stations within South Korea and the 5 IGS permanent GPS stations around the Korean Peninsula using a global network adjustment. We then calculated the absolute and relative amount of movement of the GPS permanent stations. We also identified the optimum renewal period of the permanent GPS stations considering the accuracy of relative GPS surveying. Finally, we developed a Korean a Korean crustal movement model that can be used to improvement of accuracy.

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

Configuration of GNSS CORS Network(EAREF) for Earth Observations in the East-Asia Region (동아시아지역의 GNSS CORS 지구관측 네트워크(EAREF) 구성에 관한 연구)

  • Lee, Young-Jin;Jung, Kwang-Ho;Lee, Myeong-Jun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.199-210
    • /
    • 2012
  • This paper is designed to put forth a proposal for configuration of an optimized observation network based on GNSS CORS with a view to continued monitoring of crustal deformation in the East-Asian region. For this purpose, a comprehensive analysis of the results of the testing of various forms of GNSS CORS observation network tentatively constructed based on the Asia-Pacific IGS station has confirmed that geometrically arranged minimum five and ten or more reference points and an EAREF, constructed with a baseline length no longer than 2,500km, can produce an optimum outcome. And an EAREF-applied analysis on the effects of the Great Eastern Japan Earthquake of March 2011 shows that there were conspicuous positional movements in Japan and Korea while there was no significant movement in other regions.

The high accurate monitoring technique of land deformation by using satellite image - PSInSAR -

  • Mizuno Toshimi;Kuzuoka Shigeki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.305-312
    • /
    • 2003
  • Remote sensing can provide invisible information in addition to acquire wide-view image data from space. Synthetic Aperture Radar (SAR) transmits microwave to the earth from a satellite and collects the reflected echo from the surface. Interferometric processing of SAR data can detect the subtle land deformation. The information of the surface movement by SAR is useful to monitor the volcanic activity, extended subsidence of urbanized area and the prediction of the earthquake caused by crustal deformation, and it complements the conventional levelling and GPS technique. PSInSAR (Permanent Scatterers Interferometric SAR) is one of interferometric techniques to be applied to practical projects in Japan. In this paper, the projects of land deformation monitoring are shown after the explanations of the PSInSAR principle. Tokai earthquake risk assessment is the first example. PSInSAR detects the subduction of crustal deformation of the adjacent area of new assumed epicenter region of the Tokai Earthquake. The extended subsidence of the urbanized area was implemented by using Japanese satellite data i.e. JERS that has so much data the surrounding of Japan as the archive. We examine the relationship between the geological structure and settlement at Nohbi basin including Nagoya city.

  • PDF

Geochemical and Isotopic Studies of the Cretaceous Igneous Rocks in the Yeongdong basin, Korea: Implications for the origin of magmatism in a pull-apart basin

  • H. Sagong;S.T. Kwon;C.S. Cheong;Park, S. H.
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.95-95
    • /
    • 2001
  • The Yeongdong basin is one of the pull-apart basins in the southwestern part of the Korean Peninsula that has developed during Cretaceous sinistal fault movement. The bimodal igneous activities (basalts and rhyolites) in the basin appear to be closely associated with the basin development. Here, we discuss the origin of the igneous rocks using chemical and radiogenic isotope data. Basaltic (48.4-52.7 wt% SiO$_2$) and rhyolitic (70.3-70.8 wt% SiO$_2$) rocks are slightly alkalic in a total alkali-silica diagram. The rhyolitic rocks with have unusually high K$_2$O contents (5.2-6.0 wt%). The basaltic rocks show an overall pattern of within-plate basalt in a MORB-normalized spider diagram, but have distinct negative anomaly of Nb, which indicates a significant amount of crustal component in the magma. The basaltic rocks plot within the calc-alkaline basalt field in the Hf/3-Th-Ta and Y/l5-La/10-Nb/8 discrimination diagrams. The eNd(T) values of the basaltic rocks (-13.6 to 14.3) are slightly higher than those of the rhyolitic rocks (-14.1 to 15.2), and the initial Sr isotopic ratios of the former (0.7085-0.7093) are much lower than those of the latter (0.7140-0.7149). However, the initial Nd and Sr isotope ratios of the igneous rocks in the Yeongdong basin are similar to those of the nearby Cretaceous igneous rocks in the Okcheon belt. The Pb isotope ratios plot within the field of Mesozoic granitoids outside of the Gyeongsang basin in Pb-Pb correlation diagrams. Since a basaltic magma requires the mantle source, the enriched isotopic signatures and negative Nb anomaly of the basaltic rocks suggest two possibilities for their origin: enriched mantle lithospheric source, or depleted mantle source with significant amount of crustal contamination. However, we prefer the first possibility since it would be difficult for a basaltic magma to maintain its bulk composition when it is significantly contaminated with granitic crustal material. The slightly more enriched isotopic signatures of rhyolitic rocks also suggest two possibilities: differentiate of the basaltlc magma with some crustal contamination, or direct partial melting of the lower crust. Much larger exposed volume of the rhyolitic rocks, compared with the basaltic rocks, indicates the latter possibility more favorable.

  • PDF

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

Analysis of the Crustal Displacement at Yangsan Using Precise Point Positioning (정밀절대측위를 이용한 양산지역의 지각변위 해석)

  • Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.289-295
    • /
    • 2010
  • Yangsan fault system is a large fault more than 170km and one of the important structures Geologically that has been create recently in the Korean Peninsula. Debates have been made incessantly and widely throughout the Yangsan fault system because it's a lot of earthquake record. In this study, GPS data that was received from Yangsan GPS station in were processed by the Precise Point Positioning and the movement velocity was calculated by the statistical process about the results, where is the fault zone. The results showed that Yangsan is moving by azimuth angle of $126^{\circ}$ and the velocity of 49mm/year. It is respected that this results will be utilized in basic data about geophysics.

The Estimation of Recent Crustal Movement along the Cam Lo fault from repeated GPS data (GPS 반복관측에 따른 캄로 단층의 최근 지각변동 평가)

  • Hai, Vy-Quoc;Lee, Young-Wook;Kang, Joon-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • The estimation of crustal movements along the Cam Lo fault (Quang Tri province, Vietnam) from repeated GPS data (1995-1998) is addressed in this paper. The study area is relatively small and locates at about latitude of N 16 40' 10" and longitude of E 106 58' 40" in the middle of Vietnam. The network consists of 6 points, is located in 3 tectonics units, baselines are from 3 km to 11 km. GPS observations were perforemed to the stations of our network during two campaigns in March 1995 and May 1998. Considering the relation of coordinate variation and its standard deviation based on the result, some remarks can be made: during interval from March, 1995 to May, 1998, there are movements in the investigated area, and the. vertical movements are stronger than horizontal ones. The above results will be favor in a geophysical interpretation of Cam Lo fault for geologists. This seems to be an encouraging result in studying activity of faults in Vietnam.n Vietnam.

  • PDF