• Title/Summary/Keyword: crushing effects

Search Result 91, Processing Time 0.025 seconds

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

Experimental Investigation of Out-of-Plane Seismic Resistance of Existing Walls Strengthened with RC Jacketing (RC자켓팅으로 보강된 기존 벽체의 면외방향 내진성능 실험평가)

  • Eom, Tae Sung;Hur, Moo Won;Lee, Sang Hyun;Lee, Bum Sik;Chun, Young Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.239-248
    • /
    • 2019
  • In this study, the out-of-plane seismic resistance of lightly-reinforced existing walls strengthened with thick RC jacket was investigated. The thick RC jacket with a thickness of 500 mm was placed at one side of the thin existing wall with a thickness of 150 mm. At the interface between the wall and RC jacket, a tee-shaped steel section with a number of anchor bolts and dowel bars was used as the shear connector. To investigate the connection performance and strengthening effects, the cyclic loading tests of four jacketed wall specimens were performed. The tests showed that the flexural strength of the jacketed walls under out-of-plane loading was significantly increased. During the initial behavior, the tee shear connector transferred forces successfully at the interface without slip. However, as the cracking, spalling, and crushing of the concrete increased in the exiting walls, the connection performance at the interface was significantly degraded and, consequently, the strength of the jacketed walls was significantly decreased. The flexural strength of the jacketed walls with tee shear connector was estimated considering the full and partial composite actions of the tee shear connector.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

Effects of Evaporation Processes and a Reduction Annealing on Thermoelectric Properties of the Sb-Te Thin Films (증착공정 및 환원분위기 열처리가 Sb-Te 박막의 열전특성에 미치는 영향)

  • Bae, Jae-Man;Kim, Min-Young;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • Effects of evaporation processes and a reduction annealing on thermoelectric properties of the Sb-Te thin films prepared by thermal evaporation have been investigated. The thin film evaporated by using the powders formed by crushing a $Sb_2Te_3$ ingot as an evaporation source exhibited a power factor of $2.71{\times}10^{-4}W/m-K^2$. The thin film processed by evaporation of the mixed powders of Sb and Te as an evaporation source showed a power factor of $0.12{\times}10^{-4}W/m-K^2$. The thin film fabricated by coevaporation of Sb and Te dual evaporation sources possessed a power factor of $0.73{\times}10^{-4}W/m-K^2$. With a reduction annealing at $300^{\circ}C$ for 2 hrs, the power factors of the films evaporated by using the $Sb_2Te_3$ ingot-crushed powders and coevaporated with Sb and Te dual evaporation sources were remarkably improved to $24.1{\times}10^{-4}W/m-K^2$ and $40.2{\times}10^{-4}W/m-K^2$, respectively.

Energy Perspective of Sugar Industries in Pakistan: Determinants and Paradigm Shift

  • Siddiqui, Muhammad Ayub;Shoaib, Adnan
    • Journal of Distribution Science
    • /
    • v.10 no.2
    • /
    • pp.7-17
    • /
    • 2012
  • The aim of this study is to empirically explore micro and macroeconomic factors affecting the Pakistani sugar industries and searching the energy potential of this industry, through the survey of literature. The empirical part has been explored by employing Vector Autoregression (VAR), Granger Causality tests and simultaneous equation models through quarterly data for the period of 1991q2-2008q4. The study also aims to devise policies for the development of sugar industries and identify its growing importance for the energy sector of Pakistan. Empirical tests applied on the domestic prices of sugar, domestic interest rates, and exchange rate, productive capacities of sugar mills, per capita income, world sugar prices on cultivable area and sugar production reveal very useful results. Results reveal an improvement of productive capacity of the sugar mills of Pakistan on account of increasing crushing capacity of this sector. Negative effect of rising wholesale prices on the harvesting area was also observed. Profit earnings of the sugar mills significantly increase with the rise of sugar prices but the system does not exist for the farming community to share the rising prices of sugar. The models indicate positive and significant effect of local prices of sugar on its volume of import. Another of the findings of this study positively relates the local sugar markets with the international prices of sugar. Additionally, the causality tests results reveal exchange rate, harvesting area and overall output of sugarcane to have significant effects on the local prices of sugar. Similarly, import of sugar, interest rate, per capita consumption of sugar, per capita national income and the international prices of sugar also significantly affect currency exchange rate of Pakistani rupee in terms of US$. The study also finds sugar as an essential and basic necessity of the Pakistani consumers. That is why there are no significant income and price effects on the per capita consumption of sugar in Pakistan. All the empirical methods reiterate the relationship of variables. Economic policy makers are recommended to improve governance and management in the production, stock taking, internal and external trading and distribution of sugar in Pakistan using bumper crop policies. Macroeconomic variables such as interest rate, exchange rate per capita income and consumption are closely connected with the production and distribution of sugar in Pakistan. The cartelized role of the sugar industries should also be examined by further studies. There is need to further explore sugar sector of Pakistan with the perspective of energy generation through this sector; cartelized sugar markets in Pakistan and many more other dimensions of this sector. Exact appraisal of sugar industries for energy generation can be done appropriately by the experts from applied sciences.

  • PDF

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Effects of Civil Blasting on Noise, Vibration and Total Suspended Particles (토목 발파가 소음, 진동, 부유 분진에 미치는 영향)

  • Jeong, Jin Do;Jeong, Yeong Guk
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.99-107
    • /
    • 2004
  • This research is to determine the level of environmental pollution at a blasting construction area which is the origin of noise, vibration, and suspended particle, and to compare the results with other domestic and international standard data. This experiment is also to find out the effects resulting from blasting construction and to propose a plan that can decrease environmental pollution. The blasting construction area is a factory site which is about one and half million square meter and sewage disposal plant is about ninety thousand square meter. Both were selected as the areas for the tests to be conducted in determination test. The test to determine the level of noise, vibration, and total suspended particle was conducted thirty times around the blasting construction area by comparing measurement results and numerical analysis. However, as the test was not conducted in the laboratory but in the actual blasting construction area, it was not possible to do the test with the same exact conditions each true. Therefore, the test was not ideal as conditions could change from test to test. For the most part, the level of noise was below the standard level of 70dB. Every vibration test was under the standard limitation. For example, a house, 200m away was tested for noise and vibration and the level was found to be under the 0.2 cm/sec which is the standard for specialty designed cultural sites., i.e very low level. Also a buried oil pipeline that was 30m away also marked under 2.0cm/sec which is the norm for an industrial area. However, if there were an oil pipeline under the house, the amount of charging gunpowder per hole should be decreased compared to the amount used in the test. The test result for suspended particles under the standard limitation which is 24hour average 300$\mu\textrm{g}$/㎥ at a distance from blasting wavelength, but at detonator, total suspended particle from the blast origin exceeded the standard limitation. If explosion occurs when it detonates in the hole, most of the energy would be absorbed in the crushing of rocks, but some remaining energy would make noises and vibration inevitable. So the important thing is how to minimize the environmental pollution from the blasting. There should be regulations in order that the standard limitation is not exceeded, and to decrease the environmental pollution from the blasting.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

Effect of Exercise on Neurotrophins, BDNF, NT-3, GAP43 Protein Expression and Axonal Regeneration after Sciatic Nerve Injury in F344 Rats (운동이 좌골신경 손상 F344쥐의 Neurotrophins, BDNF, NT-3, GAP-43 단백질 발현과 축삭재생에 미치는 영향)

  • Yoon Jin-Hwan;Seo Tae-Beom
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.464-471
    • /
    • 2006
  • Peripheral nerve injuries are a commonly encountered clinical problem and often result in severe functional deficits. In the present study, the effects of treadmill exercise on neurotrophin expressions and functional recovery following sciatic crushed nerve injury were investigated. Animals were randomly assigned into four groups: the sciatic nerve injury group, the sciatic nerve injury and 3-day-exercise, the sciatic nerve injury and 7-days-exercise, and the sciatic nerve injury and 14-days-exercise groups. Sciatic nerve injury was caused by crushing the right sciatic nerve for 30 s using a surgical clip. A the light-exercise was applied to each of the exercise group over the respective number of days. In the present results, we identified enhanced axonal re-growth in the distal stump of the sciatic nerve 3-14 days after crush injury with treadmill training. Dorsal root ganglion (DRG) neuron when cultured from animals with nerve injury and treadmill training showed more enhanced neurite outgrowth than that of sedentary animals. Nerve growth factor (NGF) protein levels in low-intensity treadmill training group were highly induced in the injured sciatic nerves 3, 7 and 14 days after injury compared with sedentary group, and brain-derived neurotrophin factor (BDNF) protein levels in treadmill exercise group were highly induced in the injured sciatic nerve 3 days after injury compared with sedentary group. Then, treadmill exercise increased neurotrophic factors induced in the regenerating nerves. We further demonstrate that motor functional recovery after sciatic nerve injury was promoted by treadmill exercise. Thus, the present data provide a new evidence that treadmill exercise enhanced neurotrophins expression and axonal regeneration after sciatic nerve injury in rats.