• Title/Summary/Keyword: cruise control system

Search Result 163, Processing Time 0.026 seconds

Vehicle Cruise Control with a Multi-model Multi-target Tracking Algorithm (복합모델 다차량 추종 기법을 이용한 차량 주행 제어)

  • Moon, Il-Ki;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.696-701
    • /
    • 2004
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion, have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

  • PDF

A Modeling and Control of Intelligent Cruise Control Systems (지능형 순항 제어 시스템 모델링 및 제어)

  • Lee, Se-Jin;Hong, Jin-Ho;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.283-288
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster and a step-motor controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were per formed using a complete nonlinear vehicle model. The results indicate the proposed throttle/brake control law can provide the ICC system with an optimized performance.

The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship (크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향)

  • Lee, Sung-Kyun;Lee, Jae-Hoon;Rhee, Key-Pyo;Choi, Jin-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

Event-triggered MPC for Adaptive Cruise Control System with Input Constraints (입력제한 조건을 가지는 순항 제어 시스템을 위한 이벤트-트리거 MPC)

  • Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • This paper presents an event-triggered model predictive controller for adaptive cruise control system with sampled and quantized-data. Unlike existing works, a longitudinal continuous-time model is used for the predictive control of the system. To efficiently utilize network resources, event-trigger scheme is employed, which allows limited sensor and actuator signal satisfying the condition that the measurement of errors is over the ratio of a trigger level. The proposed control gain is obtained by solving a convex problem satisfying several linear matrix inequalities at every sampling times. Simulation results are given to show the effectiveness of the proposed design method.

An Adaptive Cruise Control Systems for Intelligent Vehicles in Accordance with Vehicles Distance (지능형 차량을 위한 차간거리에 따른 능동 주행 제어 시스템 연구)

  • Bae, Jong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1157-1162
    • /
    • 2013
  • This thesis describes the active cruise control which is a part of AVHS(Advanced Vehicle and Highway System) in the ITS(Intelligent Transportation Systems). The active cruise control is a system which recognizes some obstructions and vehicles in front, drives in safe speed and puts on the brake in dangerous situations as the driver simply turns on the switch without stepping on the accelerator and brake. PID controller is used in the speed-control by linearizing the longitudinal model of the vehicle, obstacle detecting algorithm which makes use of the laser scanner is proposed to recognize the situation in front and the system's performance is tested.

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Kriging Surrogate Model-based Design Optimization of Vehicle and Adaptive Cruise Control Parameters Considering Fuel Efficiency (연비를 고려한 차량 및 적응형 순항 제어 파라미터의 크리깅 대체모델 기반 최적설계)

  • Kim, Hansu;Song, Yuho;Lee, Seungha;Huh, Kunsoo;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.817-823
    • /
    • 2017
  • In the past, research has been conducted on the development of an adaptive cruise control algorithm considering fuel efficiency, and an adaptive cruise control system considering fuel efficiency have been developed. However, research on optimizing vehicle and adaptive cruise control parameters in order to maximize performances is insufficient. In this study, the design optimization of vehicle and control parameters considering fuel efficiency, trackability, ride comfort and safe distance is performed. This paper proposes performance measures of vehicle behavior and develops an adaptive cruise control system. In addition, based on the screening of vehicle parameters that significantly influence performances, kriging surrogate models are constructed through a sequential design of experiment, and kriging surrogate model-based design optimization is performed to maximize fuel efficiency and satisfy target performances.

A Study on Adaptive Cruise Control and Monitoring System for Intelligent Vehicle (지능형 자동차를 위한 적응 주행제어 및 감시시스템에 관한 연구)

  • Yang, Seung-Hyun;Lee, Suk-Won
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.909-910
    • /
    • 2006
  • In this paper, the transfer function to the vehicle is derived from using system identification algorithm in connection with the driving vehicle. We design the adaptive cruise controller using the derived transfer function, and make it possible to monitoring and control the vehicle in real time using embedded system and technology of Internet.

  • PDF

Design of a Full-range Adaptive Cruise Control Algorithm with Collision Avoidance (전구간 주행 및 충돌회피 제어 알고리즘 설계)

  • Moon, Seung-Wuk;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.849-854
    • /
    • 2007
  • This paper describes design and tuning of a full-range Adaptive Cruise Control (ACC) with collision avoidance. The control scheme is designed to control the vehicle so that it would feel natural to the human driver and passengers during normal safe driving situations and to avoid rear-end collision in vehicle following situations. In this study, driving situations are determined using a non-dimensional warning index and time-to-collision (TTC). A confusion matrix method based on natural driving data sets was used to tune control parameters in the proposed ACC System. An ECU-Brake Hardware-in-the-loop Simulation (HiLS) was developed and used for an evaluation of ACC System. The ECU-Brake HiLS results for alternative driving situation are compared to manual driving data measured on actual traffic way. The ACC/CA control logic implemented in an ECU was tested using the ECU-Brake HiLS in a real vehicle environment.

  • PDF

A Study on the Development of Intelligent Cruise Control System (자동차 지능주행 제어시스템에 관한 연구)

  • Chung, Y.B.;Song, Y.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.176-187
    • /
    • 1995
  • The problem of designing intelligent cruise control system for a longitudinal motion of an automobile, which is powered by internal combustion engines coupled to an automatic multispeed transmission, is considered. The basic concept is a vehicle-following system which maintains desired spacing between vehicles. This system actuates throttle with the information of the spacing error so as to maintain proper spacing and improve passenger ride comfort. In designing the controller, a modified controller, i.e, PID gain scheduling and fuzzy controller with fuzzy compensator was developed in order to overcome the nonlinearities of the automobile and obtain better performance. The computer simulation results illustrate that the better vehicle responses were obtained with the modified fuzzy controller and, under this controller, the vehicle responses were found to be relatively insensitive to parameter variations.

  • PDF