• Title/Summary/Keyword: cruciform fillet welding

Search Result 17, Processing Time 0.028 seconds

Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone (십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성)

  • Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.

Fatigue Characteristics of Load Carring Cruciform Fillet Welded Joints According to Welding Methods (용접방법에 따른 하중전달 십자형 필렛 용접부의 피로특성)

  • 이용복;오병덕
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.125-133
    • /
    • 2002
  • In this study, it was investigated about endurance limit and fatigue behavior of load carrying fillet welded cruciform joints according to welding methods of SMAW, SAW, MIG and FCAW commonly using for welding structures in present. Endurance limit carried omit highly in the order of SMAW, MIG, SAW, FCAW and fatigue crack propagation ratio carried out lowly in the order of SMAW, MIG, FCAW, SAW. By these results, it is needed to use SMAW or MIG welding methods for welding structures with small welding capacity and SAW or FCAW methods for large welding structures after due consideration about economic gains and operation efficiency of welding. Fatigue crack propagation ratio is more effected by strength of welding materials than endurance limit of welding materials according to welding methods.

  • PDF

Fatigue Characteristics of Load-Carrying-Cruciform-Fillet-Welded-Joints According to Welding Methods (용접방법에 따른 하중전달 십자형 필렛 용접부의 피로특성)

  • 이용복;오병덕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, endurance limit and fatigue behavior of load carrying fillet welded cruciform joints depending on commonly used welding methods such as SMAW, SAW, MIG and FCAW are investigated. In respect of endurance limit SMAW specimen showes highest result, and then MIG, SAW, FCAW in descending order. However, SMAW specimen showes lowest crack growth rate and it followed by MIG, FCAW, SAW. By these results, it is needed to use SMAW or MIG welding methods for welding structures with small welding capacity and SAW or FCAW methods for large welding structures with respect to economic benefits and operation efficiency of welding. It was also shown fatigue crack growth rate was more influenced by the strenght of welding materials than the endurance limit of welding materials.

Patterns and Characteristics of Fatigue Failure in Cruciform Fillet Weld Joint (십자형 필릿 용접부에서의 피로파괴 형상과 특성)

  • Lee, Yong-Bok;Chung, Joon-Ki;Park, Sang-Heup
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.67-72
    • /
    • 2011
  • The proportion of the welding in the production process of machinery, buildings and marine structures is increasing and the joining are mainly conducted by butt and fillet weld. In the case of fillet weld, the shape of structures is complicated depending on the constraint on the geometry of the structures, therefore, the full penetration is mostly difficult. Accordingly, it is necessary to establish safe and economical criteria of design of the structures through the strength based on the penetration state of the fillet weld. Patterns of fatigue failure in cruciform fillet weld jont appear in the form of the root, toe and mixed failure. In the case of toe and mixed failure, the fatigue strength is higher than root failure. Therefore, we have to make the enough depth of penetration or perform the welding work through improving the fatigue strength of cruciform joints in welded structures. So it is necessary to optimize the penetrated depth in the range of the possible mixed failure and find the way in the cost-effective design to lessen the amount of the welding work.

A study on the fatigue characteristics of SM 490 A material due to the welding type (SM 490 A 재질에 대한 용접 유형에 따른 피로특성 연구)

  • Kim, Jae-Hoon;Goo, Byung-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.274-278
    • /
    • 2004
  • This study investigates the fatigue characteristics of SM 490 A material specimens for the railway vehicle due to the welding type. The more stress ratio decreases, the more strength of fillet welded specimen decreases. At speciallly, when the stress ratio of TN(Plate with transverse fillet welded rib) specimens decreases 0.5, 0.1, and -0.1, the fatigue limit decreases unifomly. The strength of TN is higher than it of NCN in the compare of fillet welding type, but the strength of NCN(Non load-carrying cruciform fillet welded joint) is higher than it of CN(Load-carrying cruciform fillet welded joint), which these specimens have the rib in the both side. We analysis the strains on the weld positions of the TN specimens during the fatigue test for the investigation of crack initiation and crack growth. In the theses results, we could find the fatigue crack initiation point and time.

  • PDF

A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint (십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • The joining methods of steel structures of gas facilities, bridges, ships etc. by welding are composed mostly of T-type or cruciform fillet welding and full penetration or partial penetration according to the uses and the shape of the structures. In this study, it was examined the characteristics of fatigue crack according to penetration depth in relation to material thickness in the cruciform fillet welded joints. From the results, it was investigated the safe design stresses within the range of infinite life. When the LOP length is long the range of infinite life is small with root failure and when the LOP length is short the range of infinite life is large with teo failure. For the specimen of material thickness, 20mm welded by 3 pass compared with 10mm, 15mm welded by 2 pass, the fatigue strength and the range of infinite life was more improved by increasing of notch toughness from formation of micro-ferrite acicular structure.

A Study on Characteristics of Fatigue Failure and Fatigue Life in Full Penetrated Cruciform Fillet Weld Zone (완전 용입 십자형 필릿용접부에서 피로파괴특성과 피로수명에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • The use of welding process has been increased for manufacture of machine, bridges, ships, gas facilities and so on together with development of welding technique. Accordingly, it has been needed to develop the welding methods considering higher productivity and safety design for manufacture of their welding structures. In this study, it was studied basically on characteristics of fatigue strength and fatigue life in full penetrated cruciform fillet weld zone in relation to material thickness, welding passes, loading direction and notch radius of toe zone. Most of fatigue failure occurred in toe zone of cruciform fillet weld joint. Fatigue strength and fatigue life are under the influence of stress concentration due to notch radius and flank angle of toe zone. The metal of toe zone annealed and diffused by multi-layer welding and acicular ferrite structure formed by the result improved fatigue strength and fatigue life.

A Study on Plastic Behaviour of Cruciform Welding Joint with Variation of Contour (십자형(十字形) 필렛 용접(熔接) 이음의 형상변화(形狀變化)에 따른 소성적(塑性的) 거동(擧動)에 대한 연구(硏究))

  • Dong-Suk,Um;Byoung-Yoon,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.4
    • /
    • pp.21-29
    • /
    • 1981
  • In this paper, plastic behavior and plastic strength of cruciform fillet welded joint under tension is investigated by finite element method. Attension is focussed, in particular, on the effect of geometry of fillet weld including its contour, size and penetration. And the approximate analysis of welded joint have been carried out from a simple model constructed by three zone, ie, base metal, heat affected zone, and weld metal.

  • PDF

A Experimental Study on the Fatigue Strength Evaluation of Load-Carrying Weldments with Lack of Penetration (부분용입된 하중전달 십자형 용접부의 피로강도 평가에 관한 실험적 연구)

  • 박상흡;이용복;남병찬;정진성
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.260-263
    • /
    • 2000
  • In this study, constant amplitude fatigue tests on load-carrying fillet welded specimen carried out, and fatigue strengths were evaluated. Also, an attempt is made to develop a new analytical model with more accuracy to predict the fatigue crack propagation life of fillet welded cruciform joints of SWS 490B steels containing lack of penetration defects. from the result of this study, fatigue crack growth characteristics of load-carrying fillet welded cruciform joints, containing lack of penetration defacts are found to be affected by the weld geometry and the number of weld pass.

  • PDF

Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint (십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF