• Title/Summary/Keyword: cruciform

Search Result 96, Processing Time 0.028 seconds

Effect of Blast Cleaning on Fatigue Behavior of Non-load-carrying Fillet Welded Cruciform Joints (블라스트 표면처리가 하중비전달형 십자필렛 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Jung, Young Soo;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Blast cleaning has been applied in steel bridges for cleaning forged surface and increasing adhesive property of applied coating systems. Blasting is the operation of cleaning or preparing a surface by forcible propelling a stream of abrasive metals against it. Blast cleaning may improve surface geometry and induce compressive residual stress, and eventually may increase fatigue life of weld joints. In this paper, fatigue tests were carried out on three types of non-load-carrying fillet welded cruciform joints, as-welded joints, blast-treated joints, and stress-relieved joints after blasting, in order to investigate effect of blast cleaning on fatigue behavior of the weld joints. By Blast cleaning, the weld toe radius was increased by 29% and compressive residual stress was induced near weld toes. Blast cleaning increased fatigue life and fatigue endurance limit of the weld joints. When the applied stress ranges decreased, the increment in fatigue life became larger. About a 150% increase in fatigue limit could be realized by using blast cleaning.

A Study on Characteristics of Fatigue Life in LOP Cruciform Fillet Welding Zone (미 용입 십자형 필릿 용접부에서의 피로 수명 특성에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.29-34
    • /
    • 2012
  • Investigating safer ways to design and use to prevent a loss of life and property by failure of the structures are necessary and assessing total fatigue life with initiation and propagation of fatigue crack accurately through fatigue analysis is very important. The object of this study is to examine the initial life and propagation life when the fatigue crack is introduced from the root which is likely to appear in LOP(Lack of Penetration) cruciform fillet welded structure including bridges, ships and gas storage facilities which are impossible to be fully penetrated and to measure the rate of fatigue life until the final cleavage failure. As the result, each rate of fatigue life for fatigue failure is somewhat different in the range of 5% according to the thickness of material, however, the overall rate of initial life is in the range of 34~39% and propagation life showed the range of 61~66%.

Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials (철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정)

  • Yu S.J.;Kim J.H;Park J.S.;Kwon D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint (십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

Cruciform Thiophene-based Molecules as Organic Semiconductors for Field Effect Transistor Applications

  • Choi, Dong-Hoon;Kim, Dae-Chul;Kim, Kyung-Hwan;Cho, Min-Ju;Jin, Jung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.170-173
    • /
    • 2007
  • Cruciform conjugated molecule, 4(DP3T)-benzene bearing terthiophene moieties has been synthesized through Horner-Emmons Reaction using 5-dodecyl-5"-aldehyde-[2,2';5',2"] terthiophene as dendrons and octaethyl benzene- 1,2,4,5-tetrayltetrakis(methylene)tetraphosphonate as the core unit; this molecule has been fully characterized. The terthiophene-based molecule exhibits good solubility in common organic solvents and good self-film forming property. They are intrinsically crystalline as they exhibit well-defined X-ray diffraction patterns from uniform orientations of molecules. Thus, intermolecular interaction can be enhanced to affect the carrier transport phenomena after annealing at $148^{\circ}C$. The semiconducting property of 4(DP3T)-benzene have been evaluated in organic field-effect transistors. 4(DP3T)-benzene exhibit carrier mobility as high as $(6.6{\pm}0.5)$ ${\times}$ $10^{-6}cm^2V^{-1}s^{-1}$.

  • PDF

Shear strength and shear behaviour of H-beam and cruciform-shaped steel sections for concrete-encased composite columns

  • Keng-Ta Lin;Cheng-Cheng Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.423-436
    • /
    • 2023
  • In this research, we tested 10 simply supported concrete-encased composite columns under monotonic eccentric loads and investigated their shear behaviour. The specimens tested were two reinforced concrete specimens, three steel-reinforced concrete (SRC) specimens with an H-shaped steel section (also called a beam section), and five SRC specimens with a cruciform-shaped steel section (also called a column section). The experimental variables included the transverse steel shape's depth and the longitudinal steel flange's width. Experimental observations indicated the following. (1) The ultimate load-carrying capacity was controlled by web compression failure, defined as a situation where the concrete within the diagonal strut's upper end was crushed. (2) The composite effect was strong before the crushing of the concrete outside the steel shape. (3) We adjusted the softened strut-and-tie SRC (SST-SRC) model to yield more accurate strength predictions than those obtained using the strength superposition method. (4) The MSST-SRC model can more reasonably predict shear strength at an initial concrete softening load point. The rationality of the MSST-SRC model was inferred by experimentally observing shear behaviour, including concrete crushing and the point of sharp variation in the shear strain.