• Title/Summary/Keyword: crtX gene

Search Result 2, Processing Time 0.018 seconds

Cloning and Characterization of the Zeaxanthin Glucosyltransferase Gene (crtX) from the Astaxanthin-Producing Marine Bacterium, Paracoccus haeundaensis

  • Seo, Yong-Bae;Choi, Seong-Seok;Nam, Soo-Wan;Lee, Jae-Hyung;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1542-1546
    • /
    • 2009
  • Zeaxanthin glucosyltransferase (CrtX) mediates the formation of zeaxanthin to zeaxanthin diglucoside. Here, we report cloning of the crtX gene responsible for zeaxanthin diglucoside biosynthesis from Paracoccus haeundaensis and the production of the corresponding carotenoids in transformed cells carrying this gene. An expression plasmid containing the crtX gene (pSTCRT-X) was constructed, and Escherichia coli cells containing this plasmid produced the recombinant protein of approximately 46 kDa. Biosynthesis of zeaxanthin diglucoside was obtained when the plasmid pSTCRT-X was co-transformed into E. coli containing the pET-44a(+)-CrtEBIYZ carrying crtE, crtB, crtI, crtY, and crtZ genes required for zeaxanthin $\beta$-D-diglucoside biosynthesis.

Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli (대장균에서 고세균 샤페론을 이용한 아스타잔틴 생산능 향상을 위한 연구)

  • Seo, Yong Bae;Lee, Jong Kyu;Jeong, Tae Hyug;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1339-1346
    • /
    • 2015
  • The aim of this study is to increase production of carotenoids in recombinant Escherichia coli by Archaea chaperonin. The carotenoids are a widely distributed class of structurally and functionally diverse yellow, orange, and red natural pigments. These pigments are synthesized in bacteria, algae, fungi, and plants, and have been widely used as a feed supplement from poultry rearing to aquaculture. Carotenoids also exhibit diverse biological properties, such as strong antioxidant and antitumor activities, and enhancement of immune responses. In the microbial world, carotenoids are present in both anoxygenic and oxygenic photosynthetic bacteria and algae and in many fungi. We have previously reported cloning and functional analysis of the carotenoid biosynthesis genes from Paracoccus haeundaensis. The carotenogenic gene cluster involved in astaxanthin production contained seven carotenogenic genes (crtE, crtB, crtI, crtY, crtZ, crtW and crtX genes) and recombinant Escherichia coli harboring seven carotenogenic genes from Paracoccus haeundaensis produced 400 μg/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin, we have co-expressed chaperone genes (ApCpnA and ApCpnB) in recombinant Escherichia coli harboring the astaxanthin biosynthesis genes. This engineered Escherichia coli strain containing both chaperone gene and astaxanthin biosynthesis gene cluster produced 890 μg/g DCW of astaxanthin, resulting 2-fold increased production of astaxanthin.