• Title/Summary/Keyword: crown rot

Search Result 57, Processing Time 0.027 seconds

Measurement of Dilution End-Points and Phytotoxicity of Toxic Metabolites Produced by Helminthosporium sativum in Barley, Wheat and Lettuce Roots (Helminthosporium sativum가 생성하는 독소물질에 대한 phytotoxicity 및 Dilution end-Points 측정 방법 개발)

  • Lee Sang. S.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.198-202
    • /
    • 1987
  • Toxic metabolites ('Toxins'), produced by Helminthosporium sativum causing leaf blotch in barley and root rot in barley and wheat were partially purified through C-18 column. The partially purified toxins appeared heat unstable and lipophilic. The responses of toxins to wheat and barley root corresponded with those to lettuce growth with the different concentrations. The determination of the concentration of toxins produced was developed using the dilution end-points. The equation [Y = a log X + b) was obtained from the semi-log­graphy with the linear analysis. The values 'a' and 'b' were discussed with the responses of several plants on the toxin produced by H. sativum.

  • PDF

Crown and Root Rot of Greenhouse Tomato Caused by Fusarium oxysporum f. sp. radicis-lycopersici in Korea

  • Kim, Jong-Tae;Park, In-Hee;Hahm, Young-Il;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.290-294
    • /
    • 2001
  • Forty(40) isolates of Fusarium oxysporum isolated from wilting tomato plants at Buyeo of Korea in 1997 were inoculated to four tomato cultivars (Ponderosa, Okitsu 3, Walter, and Zuiken) to examine pathogenic reactions. Isolation rates of F. oxysporum f. sp. lycopersici (FOL) races 1 and 2, and F. oxysporum f. sp. radicis-lycopersici(FORL) were 3.5%, 24.5%, and 57.5%, respectively. Mycelial growth on potato-dextrose agar at different temperature for the three pathogens was $26^{\circ}$. In the pathogenicity tests, however, the range of optimum temperature for disease development for FORL was between 15 and $20^{\circ}$, while that for races 1 and 2 of FOL were specifically pathogenic to tomato only. This suggests that host ranges of FORL and FOL differ significantly.

  • PDF

Effect of Plant Age on Infection of Soybean by Calonectria ilicicola (Calonectria ilicicola의 감염에 대한 콩 식물체 나이가 미치는 영향)

  • ;J. S. Russi;J. P. Snow
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.247-252
    • /
    • 1998
  • A series of greenhouse test was conducted to evaluate infection of Calonectria ilicicola on soybean plants of different ages at time of inoculation. Lesion length and number of perithecia were determined on cultivars Braxton, Deltapine 726, and Riverside 699 that were 10∼40 days old and 4-10 days old at time of inoculation. Quadratic and linear relationships were described between plant age at inoculation and lesion length or perithecia production in greenhouse studies. Soybean seedlings exhibited low susceptibility to C. ilicicola regardless of cultivar susceptibility. On 8- or 1-0-days-old Braxton, lesion lenght and perithecia numbers were reduced. Lesion lengths were longest on plants 30 days old whereas perithecia production was greatest on plants 20∼30 days old at time of inoculation. Differences in lesion length and perithecia production that were observed on young plants (4∼10 days old) were similar to relative levels of susceptibility in soybean cultivars in greenhouse and field tests, suggesting that reaction to C. ilicicola in soybean cultivars may be determined early in plant development.

  • PDF

Comparison of Susceptibility of Asparagus (Asparagus officinalis L.) Plantlets and Seedlings to Different Fusarium Speices (아스파라거스(Asparagus officinalis L.) 유묘와 기내배양 식물체의 Fusarium species에 대한 감수성 비교)

  • 이윤수
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.140-143
    • /
    • 1994
  • Comparison of susceptibility of asparagus (Asparagus officinalis L.) seedlings and plantlets to different fusarial species was made to determine whether in vitro propagated asparagus plantlets can be used as a substitute for seedlings in histopathological study on the infection processes of Fusarium species to asparagus. Fusarium oxysporum was isolated most frequently (50% of the total) from lesions of root and crown rot of asparagus cultivated in the field followed by F. moniliforme (8.8% of the total) and F. solani (2.9% of the total). Plantlets and seedlings of all asparagus were susceptible to f. moniliforme and F. oxysporum isolates, but those were not susceptible to both avirulent F. oxysporum (AVFO) and F. solani in pathogenicity tests. Overall, there were no differences between seedlings and plantlets in the susceptibility to virulent fusarial infections. In vitro propagated asparagus plantlets, therefore, could be used as a substitute for seedlings in histopathological study on the infection processes of Fuasrium species to asparagus.

  • PDF

Effects of Inoculum Density, Plant Age and Temperature on the Incidence of Crown Rot of Papper Caused by Phytophthora capsici (전염원(傳染源)의 농도(濃度), 고추의 모령(苗齡) 및 온도(溫度)가 고추역병(疫病) 발생(發生)에 미치는 영향(影響))

  • Kim, G.S.;Park, C.S.;Choi, J.S.
    • Korean journal of applied entomology
    • /
    • v.24 no.3 s.64
    • /
    • pp.117-121
    • /
    • 1985
  • Through the laboratory and vinyl house experiments, the effects of inoculum density, plant age and temperature on the incidence of Phytophthora crown rot of pepper (Capsicum annum L.) were investigated. The propagule survival was greater in the natural soil than in autoclaved soil within first 2 weeks when the sporangial suspension of the pathogenic fungus was incorporated into soil, thereafter the survivability reduced rapidly. The propagule was not detectable in 35 days by means of Papavizas selective medium neither in natural nor in autoclaved soil. At least 5 sporangia per gram soil were required to induce crown rot for 30 days old pepper seedlings. Further increase in inoculum concentration above this threshold level resulted in higher disease incidence and shorter incubation period. When the same amount of inoculum was infested, higher disease incidence was observed for younger plants until 3 weeks after inoculation. On the other hand after 4 weeks this tendency was not extended any more. Younger plants were recognized as having shorter incubation period upon infection, however, the days from first symptom appearance to complete death were not significantly different among differently aged seedlings. Exposure of inoculated pepper seedlings to $25^{\circ}C$ resulted in highest infection rates and followed by those to $30^{\circ}C\;and\;20^{\circ}C$ but no disease was found at $15^{\circ}C\;and\;35^{\circ}C$ for 10 days. When the plants previously incubated at different temperature for 10 days were moved to $25^{\circ}C$ room temperature, prior exposure to $20^{\circ}C\;and\;30^{\circ}C$ brought continuous disease development. Even those plants preincubated at $15^{\circ}C$ were diseased up to 50%. But the prior exposure to $35^{\circ}C$ induced no symptom developed, indicating no seedlings infected at all.

  • PDF

Antagonistic Potential of Fluorescent Pseudomonads and Control of Crown and Root Rot of Cucumber Caused by Phythophtora drechsleri

  • Shirzad, Akbar;Fallahzadeh-Mamaghani, Vahid;Pazhouhandeh, Maghsoud
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • In this study, 200 isolates of fluorescent pseudomonads were isolated from different fields of East and West Azarbaijan and Ardebil provinces of Iran. These bacterial isolates were screened on the basis of a dual culture assay, the presence of known antibiotic genes, and their ability to successfully colonize roots and to promote plant growth. Twelve isolates exhibited 30% or more inhibition of mycelia growth of $P.$ $drechsleri$. Genes encoding production of the antibiotics 2,4-diacetylphloroglucinol, phenazine-1-carboxylic acid, and pyoluteorin were detected in some strains but none of the strains possessed the coding gene for production of antibiotic pyrrolnitrin. In an $in$ $vitro$ test for root colonization, the population density on roots of plants treated with most of the above strains was more than 6 $\log_{10}$ CFU $g^{-1}$ roots, with a maximum of 7.99 $\log_{10}$ CFU $g^{-1}$ roots for strain 58A. Most of the strains promoted significant plant growth in comparison to non-treated controls. In green house studies, the percentage of healthy plants in pots treated with strains 58A and 8B was 90.8% and 88.7%, respectively. The difference between these treatments and treatment with the fungicide metalaxyl was not significant.

Interactions of Virulent and Avirulent Fusarium species on Clonal Asparagus Plantlets and Mechanisms Involved in Protection of Asparagus with Avirulent Fusarium Species Against Stem and Crown Rots (아스파라거스에서 병원성 및 비병원성 Fusarium균의 상호작용과 비병원성 Fusarium을 이용한 아스파라거스 줄기 및 뿌리썩음병 방제 기작 연구)

  • 이윤수
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.47-57
    • /
    • 1996
  • 병원성 Fusarium에 의한 아스파라거스 감염은 비병원성 Fusarium을 5일과 7일 전에 접종하였을 때 방제효과가 있었다. 비병원성 F. oxysporum은 F. moniliforme에 대하여 방제효과가 있었고, F. solani는 F. oxysproum에 대하여 방제효과가 있음이 밝혀졌다. 실험에 사용된 Fusarium 균들은 모두 주근과 측근의 말단 부위, 상처부위, 그리고 표피의 세포벽 사이를 통하여 감염하였다. 경우에 따라 감염하는 동안 appressorium과 유사한 구조를 형성하기도 하였고, 직접 감염하는 경우도 있었다. 병원성 그리고 비병원성 Fusarium 균 모두 공통적으로 생장점 부위를 통하여 감염하였다. 병원성이 강한 Fusarium 균의 경우 비병원성 균들보다 감염의 속도가 빨랐고 더욱 생장이 왕성하였다. F. solani는 생장속도나 기주 조직 침입속도가 매우 느렸다. 기주 감염의 결과 처음에는 cortical rot을 유발시켰고 나중에는 tracheary elements를 감염하고 결국은 조직의 괴사를 유발하는 것이 관찰되었다. 비병원성 F. oxysporum은 표피조직에 두터운 균사층을 형성하였고, 이는 병원성 Fusarium 균에 대한 방제효과를 나타내는 원인을 제공한 것으로 여겨진다. F. solani는 측근의 생성을 촉진시켜 표면적을 증대시킨 것으로 여겨진다. 결론적으로 AVFO와 F. solani를 이용하여 아스파라거스에 발생하는 병원성 Fusarium균의 침입을 저지할 수 있는 생물적 방제가 가능함이 밝혀졌다.

  • PDF

Occurrence of Major Diseases in Vegetable Growing under the Furnihsed Condition in Southern Part of Korea (남부 시설원예지대의 주요병 발생생태에 관한 연구)

  • Choi Jin-Sik;Park Chang-Seuk
    • Korean journal of applied entomology
    • /
    • v.21 no.3 s.52
    • /
    • pp.153-158
    • /
    • 1982
  • The study was conducted to obtain the basic information on the diseases epidemics of vegetable crops grown in Namji, Jinju, Gimhae and Suncheon under the extremely varied and specified conditions, plastic film house. The disease survey was conducted from the end of April, 1951 to April 1982. Leaf mold and late blight were serious foliar disease in tomato during the seedling stage, especially when the infected seeds were sown. The diseases increased rapidly 35 days after seeding. In both continuous cultivation of cucumber and rotation with upland crops, incidence of Fusarium wilt was severe while incidence of the disease was negligible in cultivations after paddy rice or grafting on pumpkin. Downy mildew of cucumber was severe in Jinju and Suncheon area, however, it was not so serious in Namji area where the growing season of cucumber was unfavorable for the maximum disease incidence. Cucumber mosaic virus disease was prevalent in the areas surveyed and the disease incidence was increased rapidly after June. Powdery mildew prevailed at the early stage of cucumber growth after transplanting in Namji area. Root rot and wilting caused by Phytophthora capsici was as the most destructive disease in pepper grown under the vinyl house, especially in Namji and Jinju area where the pepper has been cultivated intensively. The Phytophthora attacked most parts of young plants during the winter time and then induced crown rot on the adults plants. Cultivation of pepper in vinyl house was almost impossible because of the Phytophora disease by the end of June. Virus diseases to tomato plants were prevalent throughout the surveyed area and the damage was also severe. In Jinju and Gimhae area leaf mold and late blight showed high infection rate in tomato during the harvest time.

  • PDF

First Report of Waitea Ring Patch caused by Waitea circinata on Zoysiagrass (Zoysiagrass에 Waitea circinata에 의한 Waitea Ring Patch 발생)

  • Kim, Kyung-Duck;Hong, Sung-Chul;Jang, Kong-Man;Han, Muho;Pyee, Jae-Ho;Park, Dae-Sup
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.378-381
    • /
    • 2014
  • A new pathogen was isolated from zoysiagrass-planted park of Jeju island in 2014. Symptoms appeared a type of irregular patches occurring brownish leaf blight, followed by stem and crown rot. The symptom was very similar to that of large patch caused by Rhizoctonia solani, a well-known devastating zoysiagrass disease. The isolate showed thin orange-colored mycelia and screlotia were formed on the medium based on cultural characteristics. The causal agent of the disease was finally identified as Waitea circinata by analysis of ribosomal DNA. On the inoculation test, Waitea circinatae showed strong pathogenicity to the zoysiagrass. The mycelia were obviously observed in the inoculated tissues. This is the first report of Waitea ring patch caused by Waitea circinata on zoysiagrass.

Occurrence of Pythium Blight Caused by Pythium aphanidermatum on Chewing Fescue (Pythium aphanidermatum에 의한 Chewing Fescue에 잎마름병 발생)

  • Chang, Taehyun;Lee, Yong Se
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.306-311
    • /
    • 2013
  • Pythium blight occurred by Pythium aphanidermatum on chewing fescue cv. "Jamestowm II" from early June, 2010 and 2011 at the test field in Daegu University in Gyeongbuk Province, Korea. Disease symptoms on the turfgrass were leaf blights dying from the leaf tip and root rot, which appeared patches of brown to dark brown color or gray brown color in the field. The pathogens (40-1 isolate) of Pythium blight was isolated from the diseased leaf and crown tissue and cultured on potato-dextrose agar (PDA) for identification. Lobulate sporangia were inflated, complex structures, and filamentous sporangia were usually indistinguishable from vegetative hyphae. Sequences of ribosomal RNA gene of the fungus were homologous with similarity of 100% to those of P. aphanidermatum isolates in GenBank database. Pathogenicity was also confirmed on the chewing fescue, creeping betgrass and Kentucky bluegrass by Koch's postulates. This is the first report of Pythium blight on chewing fescue caused by P. aphanidermatum in Korea.