• 제목/요약/키워드: crosstalk reduction

검색결과 31건 처리시간 0.015초

Endometrial profilin 1: A key player in embryo-endometrial crosstalk

  • Lee, Chang-Jin;Hong, Seon-Hwa;Yoon, Min-Ji;Lee, Kyung-Ah;Ko, Jung-Jae;Koo, Hwa Seon;Kim, Jee Hyun;Choi, Dong Hee;Kwon, Hwang;Kang, Youn-Jung
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권2호
    • /
    • pp.114-121
    • /
    • 2020
  • Objective: Despite extensive research on implantation failure, little is known about the molecular mechanisms underlying the crosstalk between the embryo and the maternal endometrium, which is critical for successful pregnancy. Profilin 1 (PFN1), which is expressed both in the embryo and in the endometrial epithelium, acts as a potent regulator of actin polymerization and the cytoskeletal network. In this study, we identified the specific role of endometrial PFN1 during embryo implantation. Methods: Morphological alterations depending on the status of PFN1 expression were assessed in PFN1-depleted or control cells grown on Matrigel-coated cover glass. Day-5 mouse embryos were cocultured with Ishikawa cells. Comparisons of the rates of F-actin formation and embryo attachment were performed by measuring the stability of the attached embryo onto PFN1-depleted or control cells. Results: Depletion of PFN1 in endometrial epithelial cells induced a significant reduction in cell-cell adhesion displaying less formation of colonies and a more circular cell shape. Mouse embryos co-cultured with PFN1-depleted cells failed to form actin cytoskeletal networks, whereas more F-actin formation in the direction of surrounding PFN1-intact endometrial epithelial cells was detected. Furthermore, significantly lower embryo attachment stability was observed in PFN1-depleted cells than in control cells. This may have been due to reduced endometrial receptivity caused by impaired actin cytoskeletal networks associated with PFN1 deficiency. Conclusion: These observations definitively demonstrate an important role of PFN1 in mediating cell-cell adhesion during the initial stage of embryo implantation and suggest a potential therapeutic target or novel biomarker for patients suffering from implantation failure.