• Title/Summary/Keyword: crossover and mutation

Search Result 182, Processing Time 0.023 seconds

Development of Path-planing using Genetic Algorithm (유전자알고리즘을 이용한 이동로봇의 주행알고리즘 개발)

  • Choi, Han-Soo;Jeong, Heon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.889-897
    • /
    • 1999
  • In this paper, we propose a new method of path planning for autonomous mobile robot in mapped circumstance. To search the optimal path, we adopt the genetic algorithm which is based on the natural mechanics of selection, crossover and mutation. We propose a method for generating the path population, selection and evaluation in genetic algorithm. Simulations show the efficiency for the global path planning, if we adopt the proposed GA method

  • PDF

A Design of Controller for 4-Wheel 2-D.O.F. Mobile Robot Using Fuzzy-Genetic algorithms

  • Kim, Sangwon;Kim, Sunghoe;Sunho Cho;chongkug
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.607-612
    • /
    • 1998
  • In this paper, a controller using fuzzy-genetic algorithms is proposed for pat-tracking of WMR. A fuzzy controller is implemented so as to adjust appropriate crossover rate and mutation rate. A genetic algorithms is also implemented to have adaptive adjustment of control gain during optimizing process. To check effectiveness of this algorithms, computer simulation is applied.

  • PDF

Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm (Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계)

  • Kim Sung-Hoe;Kim Ki-Yeoul
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, I will propose the Niche-Meta Genetic Algorithm that has a multi-mutation operator for design of fuzzy controller. The gene in the proposed algorithm is formed by several parameters that represent the crossover rate, mutation rate and input-output membership functions. The optimization of fuzzy membership function is performed with local search on sub-population and the optimal structure is constructed with global search on total-population. The multi-mutation is selected under basis of the result of local evolution. A simulation for 2 D.O.F wheeled-mobile robot is showed to prove the efficiency of the proposed algorithm

  • PDF

A Genetic Algorithm for Trip Distribution and Traffic Assignment from Traffic Counts in a Stochastic User Equilibrium (사용자 평형을 이루는 통행분포와 통행배정을 위한 유전알고리즘)

  • Sung, Ki-Seok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.599-617
    • /
    • 2006
  • A network model and a Genetic Algorithm(GA) is proposed to solve the simultaneous estimation of the trip distribution and traffic assignment from traffic counts in the congested networks in a logit-based Stochastic User Equilibrium (SUE). The model is formulated as a problem of minimizing the non-linear objective functions with the linear constraints. In the model, the flow-conservation constraints of the network are utilized to restrict the solution space and to force the link flows meet the traffic counts. The objective of the model is to minimize the discrepancies between the link flows satisfying the constraints of flow-conservation, trip production from origin, trip attraction to destination and traffic counts at observed links and the link flows estimated through the traffic assignment using the path flow estimator in the legit-based SUE. In the proposed GA, a chromosome is defined as a vector representing a set of Origin-Destination Matrix (ODM), link flows and travel-cost coefficient. Each chromosome is evaluated from the corresponding discrepancy, and the population of the chromosome is evolved by the concurrent simplex crossover and random mutation. To maintain the feasibility of solutions, a bounded vector shipment is applied during the crossover and mutation.

  • PDF

A Compact Stereo Matching Algorithm Using Modified Population-Based Incremental Learning (변형된 개체기반 증가 학습을 이용한 소형 스테레오 정합 알고리즘)

  • Han, Kyu-Phil;Chung, Eui-Yoon;Min, Gak;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.103-112
    • /
    • 1999
  • Genetic algorithm, which uses principles of natural selection and population genetics, is an efficient method to find out an optimal solution. In conventional genetic algorithms, however, the size of gene pool needs to be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental learning based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since th proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even though the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

Global Optimum Searching Technique Using DNA Coding and Evolutionary Computing (DNA 코딩과 진화연산을 이용한 함수의 최적점 탐색방법)

  • Paek, Dong-Hwa;Kang, Hwan-Il;Kim, Kab-Il;Han, Seung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.538-542
    • /
    • 2001
  • DNA computing has been applied to the problem of getting an optimal soluting since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems This paper presents DNA coding method finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms(GA). GA searches efffectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses DNA molecules and four-type bases denoted by the A(Ademine) C(Gytosine);G(Guanine)and T(Thymine). The selection, crossover, mutation operators are applied to both DNA coding algorithm and genetic algorithms and the comparison has been performed. The results show that the DNA based algorithm performs better than GA.

  • PDF

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF

A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms (유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구)

  • 백운태;성활경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Application of multi-objective genetic algorithm for waste load allocation in a river basin (오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구)

  • Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.