• Title/Summary/Keyword: cross-slip

Search Result 98, Processing Time 0.024 seconds

Investigation of anomalous hardening in NiAl Single crystals at intermediate temperatures (중간온도 영역에서의 NiAl 단결정 이상 경화거동에 대한 연구)

  • Yang Chulho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1390-1393
    • /
    • 2005
  • The hardening model based on the dislocation mechanics is employed to study the experimentally observed high tensile elongations of NiAl along the [110] orientation at intermediate temperatures. In the hardening model proposed, a mobility of dislocation is assumed to be restricted to glide through the slip plane by forest dislocation and thermally activated cross-slip event. Overall deformation behavior of NiAl was greatly influenced by temperature-dependent dislocation mobility that both experimental and simulated yield stresses decreased as temperature increased. The results of simulation showed anomalous hardening behaviors analogous to those of experiment at certain circumstances. This behavior occurred due to the hardening contributions generated by cross-slip events that disable the dislocation motion in the primary slip systems. By comparing simulation results with experiments, it is confirmed that the proposed hardening model can represent anomalous tensile elongations due to the hardening by forest dislocations and cross-slip events.

  • PDF

Formability of Sheet Metal in Noncircular Cup Drawing (ll) - for Arbitrary Cross Sections - (비원형단면에 대한 판재 성형성(II) - 임의단면에 대하여 -)

  • 김민수;신재현;서대교
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3094-3104
    • /
    • 1993
  • The five punch and die sets are selected as the examples of arbitrary cross sections which have two opposite inclined sides. Two kinds of blank shapes are designed for all cross sections. One(h-b1.) is determined by slip-line theory and the other (G-b1.) is determined conventionally as the similar shapes with the cross sections which were used by Gopinathan. As a result of the experimental procedures, the superiority of the blank shapes designed by slip-line theory is verified in the limiting drawing ratio, the uniformity of cup height and the thickness distributions.

A Study on the Strength Characteristics of $L1_{2}-Ni_{3}Al$ Intermetallic Compound ($L1_{2}-Ni_{3}Al$ 금속간화합물의 강도특성에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.8-15
    • /
    • 2009
  • Structural studies have been performed on precipitation hardening found in $Ni_{3}Al$ based ordered alloys using transmission electron microscopy (TEM). Tilt experiments by the weak-beam method were made to obtain some information concerning the cross slip mechanism of the superlattice dislocation. The strength of ${\gamma}'-Ni_3$(Al,Ti) increases over the temperature range of experiment by the precipitation of fine $\gamma$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Over the whole temperature range, the interaction between dislocation and $\gamma$ precipitates is attractive. On the temperature range of 773 K to 973 K, the dislocations in ${\gamma}'$ matrix move on (111) primary slip plane. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in $\gamma$ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in ${\gamma}'-Ni_3$(Al,Ti) containing $\gamma$ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered $\gamma$ particles.

OUT-OF-PILE MECHANICAL PERFORMANCE AND MICROSTRUCTURE OF RECRYSTALLIZED ZR-1.5 NB-O-S ALLOYS

  • Ko, S.;Lee, J.M.;Hong, S.I.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.421-428
    • /
    • 2011
  • The out-of-pile mechanical performance and microstructure of recrystallized Zr-1.5 Nb-S alloy was investigated. The strength of the recrystallized Zr-1.5Nb-O-S alloys was observed to increase with the addition of sulfur over a wide temperature range, from room temperature up to $300^{\circ}C$. A yield drop and stress serrations due to dynamic strain were observed at room temperature and $300^{\circ}C$. Wavy and curved dislocations and loosely knit tangles were observed after strained to 0.07 at room temperature, suggesting that cross slip is easier. At $300^{\circ}C$, however, dislocations were observed to be straight and aligned along the slip plane, suggesting that cross slip is rather difficult. At $300^{\circ}C$, oxygen atoms are likely to exert a drag force on moving dislocations, intensifying the dynamic strain aging effect. Oxygen atoms segregated at partial dislocations of a screw dislocation with the edge component may hinder the cross slip, resulting in the rather straight dislocations distributed on the major slip planes. Recrystallized Zr-Nb-S alloys exhibited ductile fracture surfaces, supporting the beneficial effect of sulfur in zirconium alloys. Oxidation resistance in air was also found to be improved with the addition of sulfur in Zr-1.5 Nb-O alloys.

Nanoindentation on the Layered Ag/Cu for Investigating Slip of Misfit Dislocation (나노인덴테이션 해석을 통한 Ag/Cu층에서 발생하는 Misfit 전위의 slip 특성에 대한 연구)

  • Trandinh, Long;Ryu, Yong-Moon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.17-24
    • /
    • 2011
  • The EAM simulation of nanoindentation was performed to investigate misfit dislocation slip in the Ag/Cu. The film layer, whose thickness in the range of 2-5nm, was indented by a spherical indenter with the N$\'{o}$se-Hoover thermostat condition. The simulation shows that the indentation position relative to misfit dislocation (MFD) has the effect on the dislocation, glide up or cross slip, for Ag film layer thickness less than 4 nm. Elastic energy variation during MFDs slip was revealed to be a key factor for the softening of Ag/Cu. The critical film layer thickness was evaluated for each case of Ag/Cu according to the spline extrapolation technique.

Landing Performance of a Quadruped Robot Foot Having Parallel Linked Toes on Uneven Surface (평행링크형 발가락을 갖는 4족 보행로봇 발의 비평탄 지면 착지 성능)

  • Hong, Yeh-Sun;Yoon, Seung-Hyeon;Kim, Min-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.47-55
    • /
    • 2009
  • In this study, a robot foot having toes for firm stepping on uneven surface is proposed. The toes are connected to the lower leg by parallel links so that the lower leg can rotate in the rolling and pitching directions during stance phase without ankle joint. The landing performance of the foot on uneven surface was evaluated by relative comparison with that of the most common foot making point contact with the walking surface, since the test conditions considering real uneven surface could be hardly defined for its objective evaluation. Anti-slip margin(ASM) was defined in this study to express the slip resistance of a robot foot when it lands on a projection with half circular-, triangular- or rectangular cross section, assuming that uneven surface consists of projections having these kind of cross sections in different sizes. Based on the ASM analysis, the slip conditions for the two feet were experimentally confirmed. The results showed that the slip resistance of the new foot is not only higher than that of the conventional point contact type foot but also less sensitive to the surface friction coefficient.

Numerical Analysis of Extrusion Processes of Particle Filled Plastic Materials Subject to Slip at the Wall (미끄럼현상을 갖는 입자충전 플라스틱재료의 압출공정 수치해석)

  • 김시조;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2585-2596
    • /
    • 1994
  • Many particle filled materials like Poweder/Binder mixtures for poweder injection moldings, have complicated rheological behaviors such as an yield stress and slip phenomena. In the present study, numerical simulation programs via a finite element method and a finite difference method were developed for the quasi-three-dimensional flows and the two-dimensional flow models, respectively, with the slip phenomena taken into account in terms of a slip velocity. In order to qualitatively understand the slip effects, typical numerical results such as vector plots, pressure contours in the cross-channel plane, and isovelocity controus for the down-channel direction were discussed with respect to various slip coefficients. Slip velocities along the boudary surfaces were also investigated to find the effects of the slip coefficient and processing conditions on the overall flow behavior. Based on extensive numerical calculations varying the slip coefficients, pressure gradient, aspect ratio, and power law index, the screw characteristics of the extrusion process were studied in particular with comparisons between the slip model and non-slip model.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

Processing parallel-disk viscometry data in the presence of wall slip

  • Leong, Yee-Kwong;Campbell, Graeme R.;Yeow, Y. Leong;Withers, John W.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This paper describes a two-step Tikhonov regularization procedure for converting the steady shear data generated by parallel-disk viscometers, in the presence of wall slip, into a shear stress-shear rate function and a wall shear stress-slip velocity functions. If the material under test has a yield stress or a critical wall shear stress below which no slip is observed the method will also provide an estimate of these stresses. Amplification of measurement noise is kept under control by the introduction of two separate regularization parameters and Generalized Cross Validation is used to guide the selection of these parameters. The performance of this procedure is demonstrated by applying it to the parallel disk data of an oil-in-water emulsion, of a foam and of a mayonnaise.

RESEARCH FOR BOND STRESS-RELATIVE SLIP RELATIONSHIP (부착응력-상대슬립 관계에 대한 연구)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.221-226
    • /
    • 2002
  • This paper deals with the estimation of the bond stress based on experimental data that were tensed by axial force on both sides. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional bond-slip theories as well as the characteristics of deformed reinforcement and concrete cross-sectional area. An analytical equation for the estimation of the bond stress is formulated as the function of non-dimensional factors (e.g. bond stress, relative slip, etc.). The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data of Ikki (1996, 1999) and the representative bond stress equations of Shima (1987). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the bond stress-relative slip relationship.

  • PDF