• Title/Summary/Keyword: cross-sectional area

Search Result 1,268, Processing Time 0.027 seconds

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Effect of periodic weight support on Type I muscle of developing suspended rats. - Animal experiment for nursing inter- vention of muscle atrophy in children - (주기적인 체중지지가 발달중인 뒷다리부유쥐의 Type I 근육에 미치는 효과 -하지근 위축환아의 간호중재 개발을 위한 동물실험 -)

  • 최명애;지제근
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.2
    • /
    • pp.207-223
    • /
    • 1993
  • Inpatients are mostly occupied in bed with restricted activity, nearly all patient populations are at risk for the occurrence of skeletal muscle atrophy due to decreased level of activity. Restriction of mobility is far greater in pediatric patients compared with adult patients since almost all the activities of daily living is performed by parents or caregivers. It could be assumed that pediatric patients are more vulnerable to skeletal muscle atrophy than adult patients, however, there have been no attempts to reduce the atrophy of developing muscle. Therefore it is important to determine the effect of exercise in developing muscle during decreased activity. The purpose of this study was to determine the effect of periodic weight support during hindlimb suspension on the mass and cross-sectional area of Type I and II fibers in developing soleus(Type I ) muscle. To examine the effectiveness of periodic weight support activity in maintaining mass and fiber size. the hindlimb of young female Wistar rats was suspended(HS) and half of these rats walked on a treadmill for 45min / day(15min every 4h) at 5m / min at a 15 grade(HS-WS). After 7days of hindlimb suspension, soleus wet weight was 28. 57% smaller and relative soleus weight was 28. 21% smaller in comparison with con-trol rats (p〈0.05) Soleus wet weight and relative soleus weight increased by 67.72% and 71.43% each with periodic weight support activity during hindlimb suspension (p〈0.01, p〈0.005), moreover soleus wet weight and relative soleus weight of the HS -WS rats were greater than those of the control group. No change was observed in fiber type percentage of the developing soleus muscle after 1 week of hindlimb suspension plus weight support activity. Type I and II fiber cross-sectional areas of the developing soleus muscle were 50.45% and 43.39% lower in the HS group than in the control group (p〈0.0001), type I and II fiber cross-sectional areas of the developing soleus were 24.49% and 29.93% greater in the HS - WS group than in the HS rats (p〈0.0001), whereas Type I and II fiber cross-sectional areas of HS - WS group were less than those of the control group, The results suggest that periodic weight support activity can ameliorate developing soleus muscle atrophy induced by hindlimb suspension, even in type II fibers that would not have been expected to be recruited by this type of neuromuscular demand. Clinical experimental study is needed to deter-mine the effect of periodic weight bearing exercise on developing atrophied leg muscle based on these results.

  • PDF

Cross-sectional Optimization of a Human-Powered Aircraft Main Spar using SQP and Geometrically Exact Beam Model (기하학적 정밀 보 이론 및 SQP 기법에 의한 인간동력항공기 Main Spar 단면 설계 최적화 연구)

  • Kang, Seung-Hoon;Im, Byeong-Uk;Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • This paper presents optimization of the main spar of Human-Powered Aircraft (HPA) wing. Mass minimization was attempted, while considering large torsional deformation of the beam. Sequential Quadratic Programming (SQP) method was adopted as a relevant tool to conduct structural optimization algorithm. An inner diameter and ply thicknesses of the main spar were selected as the design variables. The objective function includes factors such as mass minimization, constant tip bending displacement, and constant tip twist of the beam. For estimation of bending and torsional deformation, the geometrically exact beam model, which is appropriate for large deflection, was adopted. Properties of the cross sectional area which the geometrically exact beam model requires were obtained by Variational Asymptotic Beam Sectional Analysis (VABS), which is a cross sectional analysis program. As a result, maintaining tip bending displacement and tip twist within 1.45%, optimal design that accomplished 7.88% of the mass reduction was acquired. By the stress and strain recovery, structural integrity of the optimal design and validity of the present optimization procedure were authenticated.

Studies on Effects of Deposition Parameters in Manufacturing of C/Sic composites by Pulse-CVI (C/SiC 복합재료 제조시 Pulse-CVI에서 증착변수의 영향 연구)

  • 김용탁;김영준;정귀영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.141-143
    • /
    • 2001
  • Ceramic fiber-reinforced composites have good mechanical properties in hardness and durability. In this study, we studied the formation of SiC/C composites from methyltrichlorosilane and hydrogen by the Pulse-chemical vapor infiltration(PCVI) to deposit silicon carbide around the changes of the amount of deposit. SiC/C composites formed at $950^{\circ}C$, 20torr, Pulse-times (5s/60s). SEM of the cross sectional area of semple showed deposited silicon carbide around fibers.

  • PDF

Torsional Elastic Waves Propagating in a Periodically-Nonuniform Circular Rod (주기적으로 불균일한 원형막대에서 전파하는 비틂 탄성파)

  • 김진오
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.323-326
    • /
    • 1998
  • The paper describes a theoretical and experimental study on the speed of the torsional elastic waves propagating in an axisymmetirc waveguide whose cross-sectional area varies periodically as an harmonic function of the axial coordinate. The approximate solution of the phase speed has been obtained using the perturbation technique for sinusoidal modulation of small amplitude. The experiment verifying the theoretical result consists of transmitting and receiving torsional waves by magnetostriction and measuring the wave speed in the waveguides with threaded surfaces.

  • PDF

A Study on the Sound Absorption Coefficient by Varying Sample Size (시편의 크기에 따른 흡음계수 변화 연구)

  • 정성수;이우섭;조문재;서상준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.83-88
    • /
    • 2001
  • The sound absorption coefficient of glass wool (bulk density of 48 kg/m:1 and 32 kg/m7) was measured by reverberation room method as varying their cross-sectional area. The results show that the absorption is larger for smaller samples because of edge effect. The absorption coefficient with two different kinds of sources. 1/.7-octave band and while noise, gives similar values.

  • PDF

Buckling optimization of compressed bars undergoing corrosion

  • Fridman, Mark M.;Elishakoff, Isaac
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.123-136
    • /
    • 2013
  • This study is devoted to the optimal design of compressed bars under axial compressive forces and exposed to a corrosive environment. The initial volume of the structure is taken as an optimality parameter. Gutman - Zainullin's exponential stress corrosion model is adopted for analysis. Analytical and numerical results are derived for optimal variation of the cross-sectional area of the bar along its axis.

A Study on the Sound Absorption Coefficient by Varying Sample Size (시편의 크기에 따른 흡음계수 변화 연구)

  • Jung, Sung-Soo;Lee, Woo-Seop;Jho, Moon-Jae;Suh, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.185-190
    • /
    • 2000
  • The sound absorption coefficient of glass wool (bulk density of 48 kg/$m^3$ and 32 kg/$m^3$) was measured by reverberation room method as varying their cross-sectional area. The results show that the absorption is larger for smaller samples because of edge effect. The absorption coefficient with two different kinds of sources, 1/3-octave band and white noise, gives similar values.

  • PDF

Hydraulic Computation and Stress Analysis of Box Culvert (암거의 수리 및 응력계산)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2557-2569
    • /
    • 1972
  • Hydraulic computations to determine the elevation of canal bottom and mater surface for box type concrete culverts are discussed. Velocity and cross sectional area of flow are computed from Manning's formula. Aad then head loss and velocity head are considered to determine the elevation of bottom and water surface. For stress analysis, 13.5 ton live load and earth pressure are considered. Also longitudinal stress of box culverts is checked.

  • PDF