• Title/Summary/Keyword: cross-order recombination

Search Result 5, Processing Time 0.018 seconds

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.

Prevalence and molecular characterization of novel recombinant enterovirus G isolates in Jeju Province of South Korea

  • Jeon, Ji Hyun;Lee, Changhee
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • Enterovirus species G (EV-G) is highly diverse, and is ubiquitous in pig populations, usually without diarrhea. The present study aimed to investigate the presence of novel EV-G recombinants with the torovirus papain-like cysteine protease (PLCP) in Jeju pig herds. EV-G1-PLCP mono-infections were most prevalent in diarrheic weaned piglets. The PLCP genes of the Jeju isolates varied in size and junction sequences, and were greatly heterogeneous, with 77.0-90.7% homology amongst all recombinants. Our results suggest that the exogenous PLCP gene has undergone continuous rapid mutation in the individual EV-G genomes following cross-order recombination, thereby causing clinical disease in swine.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

Synthesis and Characterization of Thermally Cross-linkable Hole Transporting Material Based on Poly(p-phenylenevinylene) Derivative (열경화가 가능한 poly(p-phenylenevinylene)계 정공전달 물질의 합성 및 특성)

  • Choi, Jiyoung;Lee, Bong;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.299-303
    • /
    • 2008
  • A thermally cross-linkable polymer, poly[(2,5-dimethoxy-1,4-phenylenevinylene)-alt-(1,4-phenylenevinylene)] (Cross-PPV), was synthesized by the Heck coupling reaction. In order for the polymer to be cross-linkable, 20 mol% excess divinylbenzene was added. The chemical structure of Cross-PPV and thermally crosslinked Cross-PPV were confirmed by FT-IR spectroscopy. From the FT-IR, UV-Vis, and PL spectral data, thermally crosslinked Cross-PPV was insoluble in common organic solvents. The HOMO and LUMO energy level of thermally cross-linked Cross-PPV were estimated -5.11 and -2.56 eV, respectively, which were determined by the cyclic voltammetry and UV-Vis spectroscopy. From the energy level data, one can easily notice that thermally crosslinked Cross-PPV can be used for hole injection layer effectively. Bilayer structured device (ITO/crosslinked Cross-PPV/PM-PPV/Al) was fabricated using poly(1,4-phenylenevinylene-(4-dicyanomethylene-4H-pyran)-2,6-vinylene-1,4-phenylenevinylene-2,5-bis(dodecyloxy)-1,4-phenylenevinylene (PM-PPV) as the emitting layer, which have HOMO and LUMO energy levels of -5.44 eV and -3.48 eV, respectively. The bilayered device had much enhanced the maximum efficiency (0.024 cd/A) and luminescence ($45cd/m^2$) than those of a single layer device (ITO/PM-PPV/Al, 0.003 cd/A, $3cd/m^2$). The enhanced performance originated from that fact that cross-linked Cross-PPV facilitatse the hole injection to the emissive layer and the injected hole and electron from ITO and Al are recombined in emitting layer (PM-PPV) effectively.

Efficient Production of loxP Knock-in Mouse using CRISPR/Cas9 System

  • Jung, Sundo
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2020
  • Of the various types of mice used for genome editing, conditional knock-out (cKO) mice serve as an important model for studying the function of genes. cKO mice can be produced using loxP knock-in (KI) mice in which loxP sequences (34 bp) are inserted on both sides of a specific region in the target gene. These mice can be used as KO mice that do not express a gene at a desired time or under a desired condition by cross-breeding with various Cre Tg mice. Genome editing has been recently made easy by the use of third-generation gene scissors, the CRISPR-Cas9 system. However, very few laboratories can produce mice for genome editing. Here we present a more efficient method for producing loxP KI mice. This method involves the use of an HDR vector as the target vector and ssODN as the donor DNA in order to induce homologous recombination for producing loxP KI mice. On injecting 20 ng/µL of ssODN, it was observed that the target exon was deleted or loxP was inserted on only one side. However, on injecting 10 ng/µL of the target HDR vector, the insertion of loxP was observed on both sides of the target region. In the first PCR, seven mice were identified to be loxP KI mice. The accuracy of their gene sequences was confirmed through Sanger sequencing. It is expected that the loxP KI mice produced in this study will serve as an important tool for identifying the function of the target gene.