• Title/Summary/Keyword: cross-linked polymer

Search Result 153, Processing Time 0.025 seconds

Preparation and Characterization of Conducting Composites Impregnated with Thick Polyheterocyclic Polymers (전도성 복합소재의 합성과 특성연구)

  • Park, Jun-Seo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.342-347
    • /
    • 1998
  • Light-weight conductive polymer composites were prepared by incorporating polyheterocycles such as polypyrrole and polythiophene into pores of a highly porous cross-linked polystyrene, host polymer, to form a conductive network. The highly hydrophobic and porous host polymer was synthesized by concentrated emulsion polymerization method. Polypyrrole-based composites, prepared by employing ferric chloride-methanol system, showed a conductivity as high as 0.82 S/cm. Conductivity of polythiophene-based composites, prepared from ferric chloride-acetonitrile system, was 6.05 S/cm. Conductivity of compositivity was influenced by the initial molar ratio of oxidant to monomer as well. SEM micrographs of the composites showed that conducting polymer coated uniformly the inside wall of the porous host polymer. Shielding effectiveness of the polypyrrole-based composites and of the polythiophene-based composites were 15.2 dB and 22.5 dB at 2.0 GHz, respectively. In the temperature range from 20 to 300K, a polypyrrole impregnated composite exhibited seimiconducting behavior and followed the variable range hopping(VRH) model for charge transport.

  • PDF

Synthesis and Properties of Liquid Crystal Compounds and Epoxy Resin Based Side Chain Liquid Crystal Polymers II. Linear and Crosslinked Epoxy LC Polymers (방향족 액정동족체 및 Epoxy형 측쇄 액정고분자의 합성 및 성질 II. 선형 및 가교형 측쇄 액정고분자)

  • Ahn, Wonsool;Chang, Jin Gyu;Keum, Chang Dae;Park, Lee Soon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.71-75
    • /
    • 1998
  • Liquid crystalline compounds with amine terminal group and related linear and cross-linked liquid crystal polymers with epoxy resin structure were synthesized and characterized to develope matrix materials for polymer dispersed liquid display applications. Both linear and crosslinked side chain type liquid crystal polymers made with aromatic amine mesogens and ethylene glycol diglycidyl ether exhibited nematic texture as shown by polarized optical microscope(POM) and their transition temperatures were determined both by DSC and POM. Liquid crystal polymer samples also showed even-odd effect as the spacer length of aromatic amine mesogens were varied, however, the effect was samller than that of low molecular weight mesogens. Changes of nematic-to-isotropic transition($T_{NI}$) of crosslinked type polymer liquid crystals were also disscussed in relation to the concentration change of crosslinking agent 1,10-diaminodecane.

  • PDF

Dielectric Properties of Semi-IPN Poly(phenylene oxide) Blend/$BaTiO_3$ Composites with Type of Cross-linker (가교체 종류에 따른 Semi-IPN Poly(phenylene oxide) 블렌드와 $BaTiO_3$ 복합재료의 유전특성)

  • Jang, Yong-Kyun;Lee, Ho-Il;Seong, Won-Mo;Park, Sang-Hoon;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • The dielectric properties of semi-IPN poly(phenylene oxide)(PPO) blend/$BaTiO_3$(BT) composites are investigated. The composites are fabricated via melt-mixing of crosslinker and peroxide in precursor PPO composite obtained by precipitating the suspension consisted of PPO, BT and toluene into methylethyl ketone, poor solvent of PPO. The permittivity of the precursor PPO composites shows higher value than that of integral-blended PPO composites by extruder and coincides with the theoretical value calculated by logarithmic rule of mixture. The blend of PPO and cross-linked triallyl isocyanurate is most effective for lowering the permittivity and loss tangent owing to the suppression of the orientation polarization of matrix. In contrast, 4,4'-(1,3-phenylene diisopropylidene) bisaniline, which has amine unit in its structure, increases the permittivity as well as loss tangent of the composite, but it has the ability to densify the matrix resin and the interfacial adhesion between the matrix and filler to improves flexural strength and modulus.

Temperature-Dependent Release of Drug from Copolymers of N-Isopropylacrylamide Containing Liposome (리포솜이 함유된 N-이소프로필아크릴아마이드의 공중합체로부터 온도에 따른 약물의 방출)

  • 박영심;한희동;홍성욱;김승수;신병철
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.59-66
    • /
    • 2004
  • Thermosensitive poly(N-isopropylacrylamide) gels containing temperature-sensitive liposomes showing temperature-dependent sol-gel transition were prepared. The surface of temperature-sensitive liposome was modified with copolymers of N-isopropylacrylamide and octadecylacrylate, which exhibited a lower critical solution temperature at around 30 $^{\circ}C$ After mixing the modified temperature-sensitive liposomes with poly(N-isopropylacrylamide) solution, the temperature-sensitive 1iposomes formed physically cross-linked gels through heating the solution above their lower critical solution temperatures. The release of drug from temperature-sensitive liposomes was determined by measuring fluorescence intensity. The drug release from temperature-sensitive liposomes in poly(N-isopropylacrylamide) gel gradually showed sustained-release with increasing temperature.

Fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization and its characteristics (광중합에 의한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.148-152
    • /
    • 2006
  • This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work, polysilazane liquide as a precursor was deposited on Si wafers by spin coating, microstructured and solidificated by UV lithography, and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules, hardness and tensile strength of the SiC microstructure implemented under optimum process condtions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated mulitlayer or 3D microstructures as well as its good mechanical properties.

Fabrication SiCN micro structures for extreme high temperature systems (초고온 시스템용 SiCN 마이크로 구조물 제작)

  • Thach, Phan Dui;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

Rheological Properties of Soyprotein Dope (알칼리를 처리한 콩단백질 용액의 물성)

  • Kim, Jee-Cheon;Cho, Sook-Ja;Byun, Pyung-Hwa;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.759-763
    • /
    • 1991
  • The dynamic rheological properties of the dope and the hydrated disperson of the soyprotein, as a starting material of soyprotein fiber, were studied to investigate their viscoelastic properties. The increase of protein concentration in the both cases of the dope and the dispersion resulted in the establishment of intermolecular reaction of the protein. With the addition of alkali solution to the dispersion, the dope shows the characteristics of very lightly cross-linked high molecular weight polymer. In constrast, the dispersion shows the properties of an amorphorous polymer. The effects of chemical modification of the dispersion on the dynamic properties were also investigated.

  • PDF

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics (PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

Synthesis and Swelling Kinetics of a Cross-Linked pH-Sensitive Ternary Copolymer Gel System (pH-민감성 삼성분계 공중합체 젤의 합성 및 팽윤 속도론)

  • Zafar, Zafar Iqbal;Malana, M.A.;Pervez, H.;Shad, M.A.;Momma, K.
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.219-229
    • /
    • 2008
  • A pH sensitive ternary copolymer gel was synthesized in the presence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through radical polymerization of vinyl acetate (VA), acrylic acid (AA) and methyl acrylate(MA) with a weight ratio of 1 : 1.3 : 1. A number of experiments were carried out to determine the swelling behavior of the gel under a variety of pH conditions of the swelling medium. As the pH of the swelling medium was changed from 1.0 to 8.0 at $37^{\circ}C$, the gel showed a shift in the pH-dependent swelling behavior from Fickian (n=0.3447) to non-Fickian (n=0.9125). The resulting swelling parameters were analyzed using graphical and statistical methods. The results showed that the swelling of the gel was controlled by the pH of the medium, i.e. $n=n_o{\exp}(S_{C}pH)$, where n is the diffusion exponent, $n_o(=28.9645{\times}10^{-2})$ is the pre-exponential factor and $S_C$(=0.1417) is pH sensitivity coefficient. The swelling behavior of the gel was also examined in aliphatic alcohols. The results showed that the rate of swelling increased with increasing number of carbon atoms in the alcoholic molecular chain.

Fabrication of SiCN Microstructures for Super-High Temperature MEMS and Its Characteristics (초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Lee, Gyu-Chul;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.392-393
    • /
    • 2006
  • This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work. polysilazane liquide as a precursor was deposited on Si wafers by spin coating. microstructured and solidificated by UV lithography. and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules. hardness and tensile strength of the SiC microstructure implemented under optimum process conditions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated multlayer or 3D microstructures as well as its good mechanical properties.

  • PDF