• Title/Summary/Keyword: cross spectrum

Search Result 365, Processing Time 0.021 seconds

USBL Underwater Positioning Algorithm using Phase Spectrum (위상 스펙트럼에 의한 USBL 수중위치 추정기법 연구)

  • 이용곤;이상국;도경철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.85-91
    • /
    • 2000
  • Underwater sensor accuracy test which measures the detection range and bearing accuracies of sonar simulates sonar transmitting ping and underwater radiating noise of target vessels. In this test, because the position of sonar target is the reference position of test, the sonar target position should be precisely estimated. Hence, this paper suggests to apply USBL algorithm which adopts cross phase spectrum of received sensor signals, and presents its performance by range and bearing estimation simulations. As a result of simulations, suggested algorithm shows good accuracy for underwater sensor accuracy test near 5㏈ SNR.

  • PDF

A Chirp Rate Allocation Scheme for Multiple Access Interference Reduction in Chirp Spread Spectrum Systems (처프 확산 대역 시스템에서 다중 접속 간섭의 감소를 위한 처프율 할당 기법)

  • Kim, Kwang-Yul;Lee, Seung-Woo;Kim, Yong-Sin;Lee, Jae-Seang;Kim, Jin-Young;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1420-1422
    • /
    • 2016
  • In order to guarantee the multiuser transmission performance of a chirp spread spectrum system, the cross-correlation coefficient (CCC) among multiple users should be carefully considered. In this paper, we propose a chirp rate allocation scheme for reducing the multiple access interference based on the cross-correlation coefficient. The simulation results show that the proposed scheme can improve the multiple access interference performance.

Analysis of Cross-Correlation Coefficient for Chirp Spread Spectrum Systems (처프 확산 대역 시스템을 위한 상호 상관 계수 분석)

  • Kim, Kwang-Yul;Lee, Seung-Woo;Kim, Yong-Sin;Lee, Jae-Seang;Kim, Jin-Young;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1417-1419
    • /
    • 2016
  • In order to improve the transmission performance of a chirp signal-based chirp spread spectrum system, the cross-correlation coefficient (CCC) should be carefully considered. In this paper, we derive the CCC for analyzing the transmission performance and propose the optimal chirp rate based on the analysis. The simulation results verify the mathematical derivations and show that the considered scheme can improve the performance by considering the CCC.

A Basic Study on the Improvement of Leakage Error of the Acoustic Intensity (음향 인텐시티의 누설오차 개선에 관한 기초적 연구)

  • 정의봉;정호경;안세진;윤상돈
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.345-350
    • /
    • 2003
  • Acoustic intensity is usually estimated by the cross-spectrum of acoustic pressure at two adjacent microphones. The cross-spectrum calculated by digital Fourier transform technique will unavoidably have leakage error since the period of signal will not be usually coincident with record length. Therefore, the acoustic intensity estimated by the conventional FFT analyzer will show distorted value. In this paper, the expression of the Fourier transformed data of a harmonic signal with a single frequency is formulated when there is leakage error. The method to eliminate the effect of leakage error from the contaminated data is also proposed. Some numerical examples show the validation of the proposed method.

Measurement of low level sound noise using cross spectrum method (크로스 스펙트럼 기법을 이용한 저레벨 소음의 측정)

  • 박창규;강경일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.241-248
    • /
    • 1998
  • The accurate measurement of the room sound level is required in environment noise control. However, it has been found that the measurement system noise always corrupts the actual noise from the sound source. In this study, a new sound level measurement technique in which the system noise is eliminated from the measured signal by the cross spectrum method, is proposed. The received signals of two measuring microphones are recorded to DAT through the pre-amplifier and digitized by A/D converter. The cross spectrum calculated from the digitized signals gives the accurate sound level since the system noise is uncorrelated with the sound source noise which we want to measure. The performance of the proposed technique is verified experimentally to be effective and the technique is found to be economic since the low cost general purpose microphone could be used in this technique.

  • PDF

A Study on Leak Detection Technique of a Pipe In a Noisy Environment (기계잡음 환경에서의 배관 누설탐지기법에 관한 연구)

  • Yoon, Doo-Byung;Park, Jin-Ho;Shin, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.449-460
    • /
    • 2012
  • The importance of the leak detection of a buried pipe in a power plant of Korea is being emphasized as the buried pipes of a power plant are more than 20 years old. The objective of this work is to enhance the capability of the leak detection technique in a noisy environment. For this purpose, a modified cross-correlation method that can effectively remove the rotating machinery noise component is suggested. In addition, a method for leak point detection using phase information of cross-spectrum is suggested. The validity of the proposed method is verified by performing an experiment. The experimental result demonstrates that the performance of the cross-correlation method can be enhanced by reducing the periodic noise components due to mechanical equipment.

Prompt Fission Neutron Spectra in Supercritical Accidents (Influence on the Fission Spectrum-averaged cross-sections of Some Threshold Activation Reactions)

  • Ro, Seung-Gy;Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 1975
  • On the assumption that the spectral distribution of prompt fission neutrons released from supercritical accidents can be expressed by the generalized Cranberg form with two spectral parameters, which is then transformed into the single parameter form, a variation of the fission spectrum-averaged cross-sections for some threshold reactions with varying the spectral parameter has teen calculated using an electronic computer. It appears that the average cross-sections are very sensitive to the spectral deformation, especially those for the detectors having the threshold at high neutron energy are high compared to those for the detectors of which the threshold energies are comparatively low.

  • PDF

Development of Advanced Data Analysis Method Using Harmonic Wavelet Transform for Surface Wave Method (하모닉 웨이브릿 변환을 이용한 표면파 시험을 위한 향상된 데이터 해석기법의 개발)

  • Park, Hyung-Choon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.115-123
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through multilayered systems such as a soil site is an important parameter and carries valuable information in non-destructive site characterization tests. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum determined using the cross power spectrum is easily distorted by background noise which always exists in the field. This causes distortion of measured signal and difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed and the phase spectrum by the proposed method is applied to the determination of dispersion curve. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums and dispersion curves determined by the proposed method were found to be in good agreement with the actual phase spectrums and dispersion curves biased by heavy background noise. The comparison manifests the proposed method to be a very useful tool to overcome noise effects.

A study on the Computation of Lag Time from the Spectrum Analysis (Spectrum 해석(解析)을 통(通)한 지체시간(遲滯時間)의 산출(算出)에 관(關)한 연구(硏究))

  • Choi, Han Kuy;Hwang, Im Koo
    • Journal of Industrial Technology
    • /
    • v.4
    • /
    • pp.47-53
    • /
    • 1984
  • The cross correlation function arc applied find the Lag time between the rainfall and runoff at Chuncheon Dam which is located the upstream of the North Han River. In the result, we think that spectrum analysis is better than synthetic unit hydrograph of Synder ar the river basin with the actual data.

  • PDF

The applicability study and validation of TULIP code for full energy range spectrum

  • Wenjie Chen;Xianan Du;Rong Wang;Youqi Zheng;Yongping Wang;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4518-4526
    • /
    • 2023
  • NECP-SARAX is a neutronics analysis code system for advanced reactor developed by Nuclear Engineering Computational Physics Laboratory of Xi'an Jiaotong University. In past few years, improvements have been implemented in TULIP code which is the cross-section generation module of NECP-SARAX, including the treatment of resonance interface, considering the self-shielding effect in non-resonance energy range, hyperfine group method and nuclear library with thermal scattering law. Previous studies show that NECP-SARAX has high performance in both fast and thermal spectrum system analysis. The accuracy of TULIP code in fast and thermal spectrum system analysis is demonstrated preliminarily. However, a systematic verification and validation is still necessary. In order to validate the applicability of TULIP code for full energy range, 147 fast spectrum critical experiment benchmarks and 170 thermal spectrum critical experiment benchmarks were selected from ICSBEP and used for analysis. The keff bias between TULIP code and reference value is less than 300 pcm for all fast spectrum benchmarks. And that bias keeps within 200 pcm for thermal spectrum benchmarks with neutron-moderating materials such as polyethylene, beryllium oxide, etc. The numerical results indicate that TULIP code has good performance for the analysis of fast and thermal spectrum system.