• Title/Summary/Keyword: cross sectional method

Search Result 1,324, Processing Time 0.032 seconds

Feasibility of Bilateral Crossing C7 Intralaminar Screws : A Cadaveric Study

  • Baek, Tae-Hyun;Kim, Ilsup;Hong, Jae-Taek;Kim, Daniel H.;Shin, Dongsuk;Lee, Sang-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.1
    • /
    • pp.5-10
    • /
    • 2014
  • Objective : When the pedicle screw insertion technique is failed or not applicable, C7 intralaminar screw insertion method has been used as an alternative or salvage fixation method recently. However, profound understanding of anatomy is required for safe application of the bilaterally crossing laminar screw at C7 in clinic. In this cadaveric study, we evaluated the anatomic feasibility of the bilateral crossing intralaminar screw insertion and especially focused on determination of proper screw entry point. Methods : The C7 vertebrae from 18 adult specimens were studied. Morphometric measurements of the mid-laminar height, the minimum laminar thickness, the maximal screw length, and spino-laminar angle were performed and cross-sectioned vertically at the screw entry point (spino-laminar junction). The sectioned surface was equally divided into 3 parts and maximal thickness and surface area of the parts were measured. All measurements were obtained bilaterally. Results : The mean mid-laminar height was 13.7 mm, mean minimal laminar thickness was 6.6 mm, mean maximal screw length was 24.6 mm, and mean spinolaminar angle was $50.8{\pm}4.7^{\circ}$. Based on the measured laminar thickness, the feasibility of 3.5 mm diameter intralaminar screw application was 83.3% (30 sides laminae out of total 36) when assuming a tolerance of 1 mm on each side. Cross-sectional measurement results showed that the mean maximal thickness of upper, middle, and lower thirds was 5.0 mm, 7.5 mm, and 7.3 mm, respectively, and mean surface area for each part was $21.2mm^2$, $46.8mm^2$, and $34.7mm^2$, respectively. Fourteen (38.9%) sides of laminae would be feasible for 3.5 mm intralaminar screw insertion when upper thirds of C7 spino-laminar junction is the screw entry point. In case of middle and lower thirds of C7 spino-laminar junction, 32 (88.9%) and 28 (77.8%) sides of laminae were feasible for 3.5 mm screw insertion, respectively. Conclusion : The vertical cross-sectioned area of middle thirds at C7 spinolaminar junction was the largest area and 3.5 mm screw can be accommodated with 77.8 % of feasibility when lower thirds were the screw entry point. Thus, selection of middle and lower thirds for each side of screw entry point in spino-laminar junction would be the safest way to place bilateral crossing laminar screw within the entire lamina. This anatomic study result will help surgeons to place the screw safely and accurately.

Prediction of Stage Discharge Curve and Lateral Distribution of Unit Discharge in an Arbitrary Cross Section Channel with Floodplain Vegetation (홍수터 식생을 고려한 불규칙한 단면에서의 수위-유량 곡선 및 단위유량 횡분포 예측)

  • Kim, Tae-Beom;Jang, Ji-Yeon;Shin, Jae-Kook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • A numerical model was developed to predict the stage-discharge curve and lateral distribution of unit discharge in open channels with nonuniform cross section or compound open-channels. The governing equation is the one-dimensional momentum equation based on assumptions of the steady and uniform flow conditions in the longitudinal direction and the uniform water surface elevation in a cross section. Vegetative drag force term was included in governing equation in order to reflect the effect of floodplain vegetation on the flow characteristics. Finite element method was applied to obtain the numerical solution of the governing equation. Stage-discharge curve and lateral distribution of unit discharge for a given water surface are calculated based on input data, such as the cross sectional geometry, Manning's roughness coefficient, vegetative information and longitudinal slope of channel bed. The developed model was verified by comparing the calculated results with the observed data and the results of Darby and Thorne's(1996) model and the nonlinear k-$\epsilon$ model. The verified model was applied to estimate the upstream boundary conditions in two-dimensional flow model. The numerical results using laterally distributed unit discharge were compared with those obtained using uniformly distributed unit discharge in two-dimensional flow model.

Living Cell Functions and Morphology Revealed by Two-Photon Microscopy in Intact Neural and Secretory Organs

  • Nemoto, Tomomi
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.113-120
    • /
    • 2008
  • Laser light microscopy enables observation of various simultaneously occurring events in living cells. This capability is important for monitoring the spatiotemporal patterns of the molecular interactions underlying such events. Two-photon excited fluorescence microscopy (two-photon microscopy), a technology based on multiphoton excitation, is one of the most promising candidates for such imaging. The advantages of two-photon microscopy have spurred wider adoption of the method, especially in neurological studies. Multicolor excitation capability, one advantage of two-photon microscopy, has enabled the quantification of spatiotemporal patterns of $[Ca^{2+}]_i$ and single episodes of fusion pore openings during exocytosis. In pancreatic acinar cells, we have successfully demonstrated the existence of "sequential compound exocytosis" for the first time, a process which has subsequently been identified in a wide variety of secretory cells including exocrine, endocrine and blood cells. Our newly developed method, the two-photon extracellular polar-tracer imaging-based quantification (TEPIQ) method, can be used for determining fusion pores and the diameters of vesicles smaller than the diffraction-limited resolution. Furthermore, two-photon microscopy has the demonstrated capability of obtaining cross-sectional images from deep layers within nearly intact tissue samples over long observation times with excellent spatial resolution. Recently, we have successfully observed a neuron located deeper than 0.9 mm from the brain cortex surface in an anesthetized mouse. This microscopy also enables the monitoring of long-term changes in neural or glial cells in a living mouse. This minireview describes both the current and anticipated capabilities of two-photon microscopy, based on a discussion of previous publications and recently obtained data.

Wave Propagation in a Strip Plate with Longitudinal Stiffeners (보강재를 가진 무한길이 띠 평판의 진동해석)

  • Kim, Hyungjun;Ryue, Jungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.512-519
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for its many engineering applications. In this study, the vibration characteristics of strip plates that have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element(WFE) approach, which is an effective tool for studying waveguide structures, is used in this study. The WFE method requires only a cross-sectional finite element model, and uses theoretical harmonic solutions to assess wave propagation along the longitudinal direction. First, WFE results for a simple strip plate are compared with the theoretical results(i.e., dispersion diagrams and point mobilities) to validate the numerical model. Then, in the numerical analysis, different numbers of longitudinal stiffeners are included in the plate model to investigate the effects of stiffeners in terms of the dispersion curves and mobilities. Finally, the dispersion curves of a stiffened double plate are obtained to examine the characteristics of its wave propagation.

An Performance Evaluation of Seismic Retrofitted Column Using FRP Composite Reinforcement for Rapid Retrofitting (긴급시공이 가능한 FRP 복합재료 보강재로 보강된 기둥의 내진성능평가)

  • Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee;Kwon, Min-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. In the past, cross-sectional extension method, a steel plate reinforcing method and fiver-reinforced method are applied to Seismic Rehabilitation Technique mainly. However, the reinforcement methods have drawbacks that induce physical damage to structures, large space, long duration time. So, in this study, performance evaluation of previously developed FRP seismic reinforcement which do not induce physical damage and short duration time was enforced. The specimens were constructed with 80% downscale. FRP seismic reinforcement are manufactured of glass fiber or aluminum plate with holes and glass fiber. From the experiment results, seismic performance of specimens which reinforced with FRP seismic reinforcement were increased.

Surface Modification by Atmospheric Pressure DBDs Plasma: Application to Electroless Ni Plating on ABS Plates

  • Song, Hoshik;Choi, Jin Moon;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • Acrylonitrile-butadiene-styrene (ABS) plastic is a polymer material extensively used in electrical and electronic applications. Nickel (Ni) thin film was deposited on ABS by electroless plating, after its surface was treated and modified with atmospheric plasma generated by means of dielectric barrier discharges (DBDs) in air. The method in this study was developed as a pre-treatment for electroless plating using DBDs, and is a dry process featuring fewer processing steps and more environmentally friendliness than the chemical method. After ABS surfaces were modified, surface morphologies were observed using a scanning electron microscope (SEM) to check for any physical changes of the surfaces. Cross-sectional SEM images were taken to observe the binding characteristics between metallic films and ABS after metal plating. According to the SEM images, the depths of ABS by plasma are shallow compared to those modified by chemically treatment. The static contact angles were measured with deionized (DI) water droplets on the modified surfaces in order to observe for any changes in chemical activities and wettability. The surfaces modified by plasma showed smaller contact angles, and their modified states lasted longer than those modified by chemical etching. Adhesion strengths were measured using 3M tape (3M 810D standard) and by 90° peel-off tests. The peel-off test revealed the stronger adhesion of the Ni films on the plasma-modified surfaces than on the chemically modified surfaces. Thermal shock test was performed by changing the temperature drastically to see if any detachment of Ni film from ABS would occur due to the differences in thermal expansion coefficients between them. Only for the plasma-treated samples showed no separation of the Ni films from the ABS surfaces in tests. The adhesion strengths of metallic films on the ABS processed by the method developed in this study are better than those of the chemically processed films.

A study on the biomechanical modeling of human pharynx by using FEM(Finite Element Method) (유한요소기법에 의한 인두의 생체역학모델에 관한 연구)

  • Kim, Seong-Min;Kim, Nam-Hyeon
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.423-429
    • /
    • 1998
  • Human pharynx is unique, acting as a complex interchange between the oral cavity and esophagus, and between the nasal cavity and lungs. It is actively involved in the transport of food and liquid, producing the forces that guide that bolus into the upper esophagus and away from the adjacent larynx and lungs. This study intended to develop a biomechanical model of the human pharynx, utilizing Finite Element Method(FEM). Within each model changes in cross sectional intralumenal area were calculated and compared with the area from the computer-generated FE model. Area matching allowed estimation of intraluminal pressure gradients during swallow. The estimated pharyngeal pressure gradient varies from one region to another. The estimated pharyngeal pressure gradients showed different patterns for upper four levels and lower four levels. The contraction velocity for upper four levels is much higher than lower four levels. The higher contraction velocities and pressure gradients in the upper levels are consistent with the bolus velocities required for efficient swallow.

  • PDF

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

Assessing the Spatial Distribution of Perfluorooctanoic Acid Exposure via Public Drinking Water Pipes Using Geographic Information Systems

  • Vieira, Veronica;Hoffman, Kate;Fletcher, Tony
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.9.1-9.5
    • /
    • 2013
  • Objectives Geographic Information Systems (GIS) is a powerful tool for assessing exposure in epidemiologic studies. We used GIS to determine the geographic extent of contamination by perfluorooctanoic acid, C8 (PFOA) that was released into the environment from the DuPont Washington Works Facility located in Parkersburg, West Virginia. Methods Paper maps of pipe distribution networks were provided by six local public water districts participating in the community cross-sectional survey, the C8 Health Project. Residential histories were also collected in the survey and geocoded. We integrated the pipe networks and geocoded addresses to determine which addresses were serviced by one of the participating water districts. The GIS-based water district assignment was then compared to the participants' self-reported source of public drinking water. Results There were a total of 151,871 addresses provided by the 48,800 participants of the C8 Health Project that consented to geocoding. We were able to successfully geocode 139,067 (91.6%) addresses, and of these, 118,209 (85.0%) self-reported water sources were confirmed using the GIS-based method of water district assignment. Furthermore, the GIS-based method corrected 20,858 (15.0%) self-reported public drinking water sources. Over half (54%) the participants in the lowest GIS-based exposure group self-reported being in a higher exposed water district. Conclusions Not only were we able to correct erroneous self-reported water sources, we were also able to assign water districts to participants with unknown sources. Without the GIS-based method, the reliance on only self-reported data would have resulted in exposure misclassification.

A study on the micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ Bulk Metallic Glasses using micro-forging and Finite Element Method applications (마이크로 단조를 이용한 Zr 계 벌크 비정질합금의 미세 성형성 평가와 유한요소해석 적용에 관한 연구)

  • Kang Sung-Gyu;Park Kyu-Yeol;Son Seon-Cheon;Lee Jong-Hon;Na Young-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.153-161
    • /
    • 2006
  • Micro-forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Micro-forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, micro- formability of a representative bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$. was investigated for micro-forging of U-shape pattern. Micro-formability was estimated by comparing $R_f$ values ($=A_f/A_g$), where $A_g$ is cross-sectional area of U groove, and $A_f$ the filled area by material. Micro-forging process was simulated and analyzed by applying finite element method. FEM simulation results showed reasonable agreement with the experimental results when the material properties and simulation conditions such as top die speed, remeshing criteria and boundary conditions were tightly controlled. The micro-formability of $Zr_{62}Cu_{17}Ni_{13}Al_8$ was increased with increasing load and time in the temperature range of the supercooled liquid state. Also, FEM simulation using a commercial software, DEFORM was confirmed to be applicable for the optimization of micro-forming process.